

1 / 72

[TypeDocIDHere]

<Document privacy classification> © 2023 Nokia

Nokia Validated Design

3-stage EVPN/VXLAN Fabric

3HE-21632-AAAA-TQZZA
Issue 1
March 2025

© 2025 Nokia.

Use subject to terms available at: www.nokia.com/terms.

file:///C:/Users/allisong/Downloads/www.nokia.com/terms

NVD 3-stage EVPN/VXLAN Fabric

2 3HE-21632-AAAA-TQZZA

Issue 1

Legal notice

Nokia is committed to diversity and inclusion. We are continuously reviewing our customer
documentation and consulting with standards bodies to ensure that terminology is inclusive and
aligned with the industry. Our future customer documentation will be updated accordingly.

This document includes Nokia proprietary and confidential information, which may not be distributed or
disclosed to any third parties without the prior written consent of Nokia.

This document is intended for use by Nokia’s customers (“You”/”Your”) in connection with a product
purchased or licensed from any company within Nokia Group of Companies. You agree to notify Nokia
of any errors you may find in this document; however, should you elect to use this document for any
purpose(s) for which it is not intended, You understand and warrant that any determinations You may
make or actions You may take will be based upon Your independent judgment and analysis of the
content of this document.

Nokia reserves the right to make changes to this document without notice.

No part of this document may be modified.

NO WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO ANY WARRANTY OF AVAILABILITY, ACCURACY, RELIABILITY, TITLE, NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, IS MADE IN RELATION TO
THE CONTENT OF THIS DOCUMENT. IN NO EVENT WILL NOKIA BE LIABLE FOR ANY
DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, DIRECT, INDIRECT, INCIDENTAL OR
CONSEQUENTIAL OR ANY LOSSES, SUCH AS BUT NOT LIMITED TO LOSS OF PROFIT,
REVENUE, BUSINESS INTERRUPTION, BUSINESS OPPORTUNITY OR DATA THAT MAY ARISE
FROM THE USE OF THIS DOCUMENT OR THE INFORMATION IN IT, EVEN IN THE CASE OF
ERRORS IN OR OMISSIONS FROM THIS DOCUMENT OR ITS CONTENT.

Copyright and trademark: Nokia is a registered trademark of Nokia Corporation. Other product names
mentioned in this document may be trademarks of their respective owners.

© 2025 Nokia.

NVD 3-stage EVPN/VXLAN Fabric

3 3HE-21632-AAAA-TQZZA

Issue 1

Contents

1 Executive summary ... 6

2 Reference architecture overview ... 6

 Design considerations and components .. 6

 High-level operational workflow .. 7

3 Network deployment ... 8

 High-level design ... 8

 Platform positioning ... 10

 Network architecture... 11

4 Feature configuration .. 16

 Underlay with IPv6 link-local addressing for P2P interfaces between leafs and spines 16

 Default network-instance ... 17

 BGP for underlay and overlay routes .. 18

 Maximum Transmission Unit (MTU) ... 20

 Bidirectional Forwarding Detection (BFD) .. 20

 Link Layer Discovery Protocol (LLDP) .. 21

 Layer 2 server-facing interfaces .. 21

 All-active ES-based Link Aggregation Group (LAG) ... 22

 Single-active ES-based Link Aggregation Group (LAG) .. 24

 Active/backup with no Link Aggregation Group (LAG) .. 27

 Layer 3 server-facing interfaces .. 29

 IRB interfaces ... 30

 VXLAN tunnels .. 30

 MAC VRFs .. 31

 IP VRFs ... 32

 Node isolation .. 33

5 Test summary .. 35

 Feature matrix .. 35

6 EDA integration .. 37

 EDA architecture .. 37

 EDA Onboarding with ZTP .. 40

NVD 3-stage EVPN/VXLAN Fabric

4 3HE-21632-AAAA-TQZZA

Issue 1

 EDA Kubernetes workflow for NVD deployment.. 41

6.3.1 EDA artifacts for SR Linux version 24.10.2 .. 41

6.3.2 Subnet allocation for management of SR Linux fabric nodes ... 42

6.3.3 EDA node profile for node onboarding ... 43

6.3.4 Modify existing init-base CR to save on commit for SR Linux nodes 43

6.3.5 Create node user to manage SR Linux nodes from EDA .. 44

6.3.6 Onboarding nodes in EDA with using a TopoNode Custom Resource 44

6.3.7 Building ASN pools for leafs and spines of the fabric .. 45

6.3.8 System0 IP pool allocation ... 45

6.3.9 Interface creation .. 46

6.3.10 Link creation ... 46

6.3.11 Fabric creation (underlay and overlay).. 47

6.3.12 Bridge domain creation .. 48

6.3.13 IRB interfaces ... 48

6.3.14 IP VRF creation ... 49

6.3.15 VLAN creation ... 49

6.3.16 EDA configlets .. 50

 EDA workflows via User Interface (UI) ... 51

6.4.1 Node profiles for node onboarding .. 51

6.4.2 ASN pools for leafs and spines .. 52

6.4.3 IP pool creation allocation .. 53

6.4.4 Onboarding nodes ... 54

6.4.5 Fabric creation ... 55

6.4.6 Bridge domains .. 56

6.4.7 IRB interfaces ... 57

6.4.8 IP VRFs (Routers) .. 58

6.4.9 VLANs .. 59

6.4.10 Configlets for custom configuration ... 60

7 Validation .. 61

 Network validation ... 61

7.1.1 Underlay and overlay .. 61

7.1.2 Link aggregation .. 63

7.1.3 Ethernet segments .. 64

NVD 3-stage EVPN/VXLAN Fabric

5 3HE-21632-AAAA-TQZZA

Issue 1

7.1.4 MAC VRFs and MAC address learning .. 64

7.1.5 Route validation in default network-instance and IP VRFs .. 65

 EDA validation .. 66

7.2.1 Onboarding validation ... 66

8 Automation and Orchestration .. 71

 Digital twin with Containerlab .. 71

NVD 3-stage EVPN/VXLAN Fabric

6 3HE-21632-AAAA-TQZZA

Issue 1

1 Executive summary

Nokia Validated Designs (NVDs) is a workstream dedicated to producing validated

recommendations to the consumer about Nokia’s portfolio across market segments.

This is accomplished with extensive requirement analysis from a multitude of customers

along with deep research of the technology development in the industry segment to form

the solutions design.

Once the design has been compiled, it goes through an intense array of hardware,

software, traffic and failure tests to form the validated design. The resultant design and

collateral provide the consumer with a template which can be used to deploy the solution

in their own environment.

NVDs are structured as core and ancillary (extension) designs. This document is based on

a 3-stage Clos EVPN VXLAN design, covering various physical and logical connectivity

aspects and associated technologies involved in a single site, multi-tiered data center

architecture with EVPN as the control plane and VXLAN as the data plane.

2 Reference architecture overview

 Design considerations and components

A high-level overview of the topology is shown in Figure 1.

NVD 3-stage EVPN/VXLAN Fabric

7 3HE-21632-AAAA-TQZZA

Issue 1

Figure 1. 3-stage EVPN VXLAN NVD architecture

This section describes the various components involved in this validated design and the

design and technology choices that were made.

• The design strategically positions multiple Nokia data center platforms at the

spine and leaf layers of a 3-stage Clos fabric. The purpose of positioning multiple

variants of platforms is to help the consumer make informed decisions according

to their sizing, scale, and needs.

• This also shows seamless interoperability with Broadcom Tomahawk platforms on

the spines and Broadcom Trident platforms at the leaf layers.

• Server connectivity options are tested across all platforms.

• Trident-based platforms (7220 IXR-D3Ls, D4s and D5s) are positioned at the leaf

layer for VXLAN support, and a Tomahawk-based platform (7220 IXR-H4) is at the

spine layer for higher port radix since the fabric uses lean spines with need for only

IP forwarding functionality (as this is an Edge-Routed Bridging [ERB] design).

• The design uses an IPv6-only underlay using IPv6 link-local addressing and

Neighbor Discovery (ND).

• A single MP-BGP session is dynamically established using these IPv6 link-local

addresses, and it can carry multiple AFIs/SAFIs (IPv4, IPv6, EVPN) as needed.

• During the establishment of this session, the extended next-hop encoding

capability is exchanged, enabling IPv4 routes to be advertised with IPv6 next hops

(RFC 8950). This enables the fabric underlay to be IPv6 link-local only, allowing

operators to move away from the operational overhead of IPv4 underlay

management while still providing an IPv4 overlay.

• This design covers the following server connectivity options:

o Layer 2 untagged

o Layer 2 tagged

o Layer 3 point-to-point with static routes on the leaf (for subnets behind the

server) exported as EVPN Type-5 routes into the fabric

o 4-way ES-based LAG in all-active multihoming mode

o 2-way ES-based LAG in single-active multihoming mode

o Layer 2 untagged/tagged active/backup (Linux bond mode 1) with no LAG

 High-level operational workflow

Figure 2 depicts a high-level operational workflow for the NVD-based fabric deployment

and lifecycle management. The intent-based approach, combined with the prescriptive

nature of the validated design and the flexibility of Nokia’s Event Driven Automation

(EDA), makes the deployment of the fabric effortless and reliable.

NVD 3-stage EVPN/VXLAN Fabric

8 3HE-21632-AAAA-TQZZA

Issue 1

Figure 2. High-level operational flow diagram

• As with traditional deployments, broad customer requirements are gathered based

on the applications and workloads that are going to be operational in the data

center.

• Once analyzed and collated into infrastructure requirements, they are converted to

an intent by customizing the closest available Nokia validated design (in this case,

the 3-stage EVPN VXLAN NVD).

• Once the customization is complete, the intent can be described in EDA by using

EDA K8s manifest files, REST APIs or the UI.

• EDA will then generate and push the per-node configuration (these are nodes

already onboarded onto EDA using ZTP).

• Once the fabric is deployed, EDA provides comprehensive telemetry options that

can be connected to CI/CD pipelines to modify the intent and the fabric as needed.

• Since EDA as a platform does not need to be reinstalled for new patches or apps, it

provides a high degree of flexibility and customizability for modern DC fabric

needs.

3 Network deployment

 High-level design

Figures 3 and 4 depict a high-level design of the fabric. The topology is a 3-stage Clos

fabric with BGP EVPN as the control plane and VXLAN as the data plane encapsulation

method with point-to-point layer 3 links between the leafs and spines. These point-to-

point interfaces are configured with IPv6-link local addressing (as shown in Figure 3), with

each leaf advertising its IPv4 loopback address with an IPv6 next-hop (RFC 8950), as

shown in Figure 4, using leaf1 as a reference. Each node in Figure 4 is labeled with sample

IPv4 addresses assigned to the loopback interface.

NVD 3-stage EVPN/VXLAN Fabric

9 3HE-21632-AAAA-TQZZA

Issue 1

Figure 3. High-level diagram with underlay and overlay

Figure 4. High-level diagram with underlay and overlay

This is an Edge-Routed Bridging (ERB) design with Integrated Routing and Bridging (IRB)

interfaces configured on the leafs using a distributed anycast gateway model. All server

NVD 3-stage EVPN/VXLAN Fabric

10 3HE-21632-AAAA-TQZZA

Issue 1

connectivity terminates at the leafs, where the leafs act as VXLAN tunnel endpoints

(VTEPs).

For routing between VNIs, this design uses an asymmetric routing model (as described in

RFC 9135), along with symmetric routing using EVPN Type-5 routes for certain subnets.

 Platform positioning

This section describes the Nokia platforms positioned for different roles in the 3-stage

EVPN VXLAN validated design. Figure 5 provides a visual depiction while Table 1 lists all

platforms and their count in the fabric.

Figure 5. High-level diagram depicting platform positioning

Device Role Count

7220-IXR-H4 Spine 2

7220-IXR-D5 Leaf 2

7220-IXR-D4 Leaf 2

7220-IXR-D3L Leaf 2

Table 1. Platform positioning

Note: Alternate platforms can be positioned in the roles shown above based on cost,

hardware, and performance requirements.

NVD 3-stage EVPN/VXLAN Fabric

11 3HE-21632-AAAA-TQZZA

Issue 1

Figure 6. Nokia data center portfolio

 Network architecture

In this section, we describe common traffic patterns that are validated in the 3-stage

EVPN VXLAN NVD.

These traffic patterns include forwarding across Layer 2 tagged and untagged interfaces,

Layer 3 interfaces, 4-way all-active Ethernet Segment LAG, 2-way single-active Ethernet

Segment LAG, and active/backup server NIC-bonding with no Link Aggregation Group

(LAG).

Figure 7 and 8 show traffic ingress on a single-homed interface and egress out of an

Ethernet Segment member interface (either local or remote).

• When the ingress leaf (VTEP) is part of the egress Ethernet Segment, forwarding

follows the local-bias rules, where the local egress member of the Ethernet

Segment is selected as the exit interface.

• In Figure 8, if the local egress member link of the Ethernet Segment is not available

(down), packets are forwarded over the fabric by encapsulating with VXLAN headers

towards a remote leaf (VTEP) that is also part of the same Ethernet Segment,

eventually leaving via the member interface of this Ethernet Segment.

NVD 3-stage EVPN/VXLAN Fabric

12 3HE-21632-AAAA-TQZZA

Issue 1

Figure 7. Packet flow for Layer 2 tagged and untagged traffic using local-bias

forwarding

NVD 3-stage EVPN/VXLAN Fabric

13 3HE-21632-AAAA-TQZZA

Issue 1

Figure 8. Packet flow for Layer 2 tagged and untagged traffic exiting via a remote VTEP

when local member interface of Ethernet Segment is down on ingress VTEP

Figure 9 demonstrates traffic ingress on a 4-way all-active Ethernet Segment with the

egress via a single-homed Layer 3 interface on a remote VTEP. In this case, the

destination that is connected via a Layer 3 interface will be learnt using EVPN Type-5

routes.

NVD 3-stage EVPN/VXLAN Fabric

14 3HE-21632-AAAA-TQZZA

Issue 1

Figure 9. Packet flow for traffic ingress on a 4-way Ethernet Segment member

interface directed to a destination behind a Layer 3 interface on a remote VTEP

Figure 10 and Figure 11 demonstrate the traffic patterns for a destination that is behind

a single-active Ethernet Segment.

• Figure 10 demonstrates traffic ingress via the active VTEP of a single-active

Ethernet Segment and uses local-bias forwarding rules to send out another locally

attached Ethernet Segment.

• Figure 11 demonstrates traffic ingress on a single-homed interface. It is forwarded

over the fabric by encapsulating VXLAN headers with the egress via the interface

of the single-active Ethernet Segment of the active, remote VTEP. On the ingress

VTEP, the Ethernet Segment resolves to the VTEP address of the active node only.

NVD 3-stage EVPN/VXLAN Fabric

15 3HE-21632-AAAA-TQZZA

Issue 1

Figure 10. Single-active Ethernet Segment with local-bias forwarding

NVD 3-stage EVPN/VXLAN Fabric

16 3HE-21632-AAAA-TQZZA

Issue 1

Figure 11. Single-active Ethernet Segment with forwarding over fabric

4 Feature configuration

 Underlay with IPv6 link-local addressing for P2P interfaces between

leafs and spines

The point-to-point interfaces between the leafs and the spines are enabled for IPv6 only,

with link-local addressing. IPv6 Neighbor Discovery (ND) is used to resolve the peers’

address. The addressing is enabled on subinterfaces within each physical interface. These

subinterfaces are then mapped to the default network-instance.

The system0 interface, used as the VTEP address, is configured with a /32 address. These

addresses are used as the source and destination addresses in the outer IP header for

VXLAN tunnels. In this document, the IPv4 documentation range 192.0.2.0/24 is used for

assignment.

// uplink to spine1

A:leaf1# info interface ethernet-1/29
 interface ethernet-1/29 {
 admin-state enable
 subinterface 0 {
 admin-state enable
 ipv6 {

NVD 3-stage EVPN/VXLAN Fabric

17 3HE-21632-AAAA-TQZZA

Issue 1

 admin-state enable
 router-advertisement {
 router-role {
 admin-state enable
 max-advertisement-interval 10
 min-advertisement-interval 4
 }
 }
 }
 }
 }

// system0 configuration

A:leaf1# info interface system0
 interface system0 {
 subinterface 0 {
 admin-state enable
 ipv4 {
 admin-state enable
 address 192.0.2.4/32 {
 }
 }
 }
 }

Example 1. Configuration of point-to-point interfaces and system0 interface

 Default network-instance

The point-to-point interfaces between the leafs and the spines are mapped to the

default network-instance in SR Linux. Additionally, the system0 subinterface used as the

VXLAN tunnel endpoint (VTEP) source address is also mapped to the default network-

instance. Since the NVD uses IPv4 addressing for the system0 interface (which is used for

VXLAN tunnels), the IPv6 forwarding check must be disabled as IPv4 packets received on

an IPv6-only interface are dropped by default. This is achieved by setting the ip-

forwarding receive-ipv4-check configuration option to false.

// configuration of default network-instance which forms the underlay or IP fabric

A:leaf1# info network-instance default
 network-instance default {
 type default
 admin-state enable
 description "fabric: dc1 role: leaf"
 router-id 192.0.2.4
 ip-forwarding {
 receive-ipv4-check false
 }
 interface ethernet-1/29.0 {
 }
 interface ethernet-1/30.0 {
 }
 interface system0.0 {
 }

snip

Example 2 Configuration snippet of the default network-instance

NVD 3-stage EVPN/VXLAN Fabric

18 3HE-21632-AAAA-TQZZA

Issue 1

 BGP for underlay and overlay routes

The NVD uses an eBGP design (with all spines assigned the same ASN and each leaf

assigned a unique ASN), utilizing MP-BGP functionality with multiple address families

advertised as capabilities over a single BGP session. The eBGP sessions are configured for

dynamic discovery, leveraging the IPv6 link-local underlay design and IPv6 ND capabilities.

In addition, the following also apply to BGP:

- EDA generated routing policies for advertising underlay IPv4 routes and overlay

EVPN routes

- Configuration option to allow IPv4 routes to be advertised with IPv6 next hops

- Configuration option to accept receipt of IPv4 routes with IPv6 next hops

- Multipath enabled for IPv4 unicast and L2VPN EVPN AFIs/SAFIs

- Configuration option to enable rapid withdrawal of BGP routes and rapid update of

EVPN routes

- On the spines, inter-as-vpn configuration option must be set to true for an eBGP

design since the spines are not configured with any VXLAN constructs; thus, drop

all inbound BGP EVPN updates due to no corresponding route target.

// BGP configuration

A:leaf1# info network-instance default protocols bgp
 network-instance default {
 protocols {
 bgp {
 admin-state enable
 autonomous-system 65411
 router-id 192.0.2.4
 dynamic-neighbors {
 interface ethernet-1/29.0 {
 peer-group bgpgroup-ebgp-dc1
 allowed-peer-as [
 65500
]
 }
 interface ethernet-1/30.0 {
 peer-group bgpgroup-ebgp-dc1
 allowed-peer-as [
 65500
]
 }
 }
 ebgp-default-policy {
 import-reject-all true
 export-reject-all true
 }
 afi-safi evpn {
 admin-state enable
 multipath {
 allow-multiple-as true
 maximum-paths 64
 }
 evpn {
 inter-as-vpn true
 rapid-update true
 }

NVD 3-stage EVPN/VXLAN Fabric

19 3HE-21632-AAAA-TQZZA

Issue 1

 }
 afi-safi ipv4-unicast {
 admin-state enable
 multipath {
 allow-multiple-as true
 maximum-paths 2
 }
 ipv4-unicast {
 advertise-ipv6-next-hops true
 receive-ipv6-next-hops true
 }
 evpn {
 rapid-update true
 }
 }
 afi-safi ipv6-unicast {
 admin-state enable
 multipath {
 allow-multiple-as true
 maximum-paths 2
 }
 evpn {
 rapid-update true
 }
 }
 preference {
 ebgp 170
 ibgp 170
 }
 route-advertisement {
 rapid-withdrawal true
 wait-for-fib-install false
 }
 group bgpgroup-ebgp-dc1 {
 admin-state enable
 export-policy [
 ebgp-isl-export-policy-dc1
]
 import-policy [
 ebgp-isl-import-policy-dc1
]
 failure-detection {
 enable-bfd true
 fast-failover true
 }
 afi-safi evpn {
 admin-state enable
 }
 afi-safi ipv4-unicast {
 admin-state enable
 ipv4-unicast {
 advertise-ipv6-next-hops true
 receive-ipv6-next-hops true
 }
 }
 afi-safi ipv6-unicast {
 admin-state enable
 }
 }
 }
 }
 }

Example 3. BGP configuration from leaf1 for underlay and overlay routes

NVD 3-stage EVPN/VXLAN Fabric

20 3HE-21632-AAAA-TQZZA

Issue 1

 Maximum Transmission Unit (MTU)

System-wide MTUs are configured globally to accommodate larger-sized packets

(considering 50 Bytes overhead is added as part of the overall VXLAN encapsulation). On

Nokia 7220 IXR-D3Ls, D4s, and D5s (which comprise the leafs in the NVD topology), the

following MTUs are configured:

// system-wide default MTU configuration on leafs

A:leaf1# info system mtu
 system {
 mtu {
 default-port-mtu 9412
 default-l2-mtu 9412
 default-ip-mtu 9200
 }
 }

Example 4. Configuration of system-wide default MTUs on a Nokia 7220 IXR-D4

On the spines, which are Nokia 7220 IXR-H4s, the following MTUs are configured:

// system-wide default MTU configuration on spines

A:spine1# info system mtu
 system {
 mtu {
 default-port-mtu 9412
 default-ip-mtu 9200
 }
 }

Example 5. Configuration of system-wide default MTUs on a Nokia 7220 IXR-H4

With a maximum configured IP MTU of 9200, the maximum sized payload within an IP

packet that can be sent from the server is 9168.

 Bidirectional Forwarding Detection (BFD)

BFD is enabled on the links between the leafs and the spines. BGP is enabled for fast-

failover using BFD (with a failure detection time of 750ms).

// BGP configuration on point-to-point subinterface

A:leaf1# info bfd
 bfd {
 subinterface ethernet-1/29.0 {
 admin-state enable
 desired-minimum-transmit-interval 250000
 required-minimum-receive 250000
 detection-multiplier 3
 minimum-echo-receive-interval 250000
 }
 subinterface ethernet-1/30.0 {
 admin-state enable

NVD 3-stage EVPN/VXLAN Fabric

21 3HE-21632-AAAA-TQZZA

Issue 1

 desired-minimum-transmit-interval 250000
 required-minimum-receive 250000
 detection-multiplier 3
 minimum-echo-receive-interval 250000
 }
 }

// BGP enabled for fast-failover with BFD

A:leaf1# info network-instance default protocols bgp group bgpgroup-ebgp-dc1 failure-detection
 network-instance default {
 protocols {
 bgp {
 group bgpgroup-ebgp-dc1 {
 failure-detection {
 enable-bfd true
 fast-failover true
 }
 }
 }
 }
 }

Example 6. Configuration of BFD and BGP enabled for fast-failover

 Link Layer Discovery Protocol (LLDP)

LLDP is used to discover neighboring devices.

// LLDP enabled for neighbor discovery

A:leaf1# info system lldp
 system {
 lldp {
 interface ethernet-1/29 {
 admin-state enable
 }
 interface ethernet-1/30 {
 admin-state enable
 }
 }
 }

Example 7. LLDP configuration

 Layer 2 server-facing interfaces

Untagged and tagged Layer 2 server-facing interfaces are tested as part of this NVD. A

sample configuration is provided below with multiple subinterfaces configured on an

interface, one tagged and another untagged. Use of subinterfaces in this fashion allows

for a logical separation of the expected traffic on the physical interface. These

subinterfaces are then mapped to their respective MAC-VRFs (shown later in this

document).

// Layer 2 untagged and tagged subinterfaces

A:leaf1# info interface ethernet-1/1
 interface ethernet-1/1 {

NVD 3-stage EVPN/VXLAN Fabric

22 3HE-21632-AAAA-TQZZA

Issue 1

 admin-state enable
 vlan-tagging true
 subinterface 40 {
 type bridged
 admin-state enable
 vlan {
 encap {
 single-tagged {
 vlan-id 40
 }
 }
 }
 }
 subinterface 4096 {
 type bridged
 admin-state enable
 vlan {
 encap {
 untagged {
 }
 }
 }
 }
 }

Example 8. Configuration of Layer 2 untagged and tagger server-facing interfaces

 All-active ES-based link aggregation group (LAG)

A 4-way all-active Ethernet Segment is tested as part of this NVD. Ethernet Segments are

supported natively within EVPN as a standard, allowing more than just two VTEPs for

multihoming. The configuration includes the following:

- Mapping the physical interface (meant to be part of a LAG in the case of this NVD)

to a LAG interface

- Configuring the LAG interface with required LACP parameters

- Configuring an Ethernet Segment (and all required parameters) and mapping it to

the respective LAG interface

- The Designated Forwarder election activation timer is set to 0 (the default timer is

3 seconds). This timer controls the delay of transition from non-DF to DF.

// physical interface mapped to LAG interface

A:leaf1# info interface ethernet-1/3
 interface ethernet-1/3 {
 description leaf1-leaf2-leaf3-leaf4-lag1
 admin-state enable
 ethernet {
 aggregate-id lag1
 lacp-port-priority 32768
 reload-delay 100
 }
 }

// LAG interface configured with untagged/tagged subinterfaces and LACP parameters

A:leaf1# info interface lag1
 interface lag1 {

NVD 3-stage EVPN/VXLAN Fabric

23 3HE-21632-AAAA-TQZZA

Issue 1

 description leaf1-leaf2-leaf3-leaf4-lag1
 admin-state enable
 vlan-tagging true
 subinterface 50 {
 type bridged
 admin-state enable
 vlan {
 encap {
 single-tagged {
 vlan-id 50
 }
 }
 }
 }
 subinterface 4096 {
 type bridged
 admin-state enable
 vlan {
 encap {
 untagged {
 }
 }
 }
 }
 lag {
 lag-type lacp
 min-links 1
 lacp-fallback-mode static
 lacp-fallback-timeout 60
 lacp {
 interval FAST
 lacp-mode ACTIVE
 admin-key 1
 system-id-mac 00:00:11:22:33:44
 system-priority 32768
 }
 }
 }

// Ethernet Segment configuration for all-active multihoming mode

A:leaf1# info system network-instance protocols
 system {
 network-instance {
 protocols {
 evpn {
 ethernet-segments {
 bgp-instance 1 {
 ethernet-segment leaf1-leaf2-leaf3-leaf4-lag1 {
 admin-state enable
 esi 00:00:00:11:22:33:44:00:00:00
 multi-homing-mode all-active
 interface lag1 {
 }
 df-election {
 timers {
 activation-timer 0
 }
 algorithm {
 type default
 }
 }
 }
 }
 }

NVD 3-stage EVPN/VXLAN Fabric

24 3HE-21632-AAAA-TQZZA

Issue 1

 }
 bgp-vpn {
 bgp-instance 1 {
 }
 }
 }
 }
 }

Example 9. Configuration of all-active ES-based LAG

 Single-active ES-based link aggregation group (LAG)

Single-active Ethernet Segments (with port-active functionality, described in IETF draft

https://www.ietf.org/archive/id/draft-ietf-bess-evpn-mh-pa-10.html, as of March 2025)

are tested as part of this NVD. This is useful if the server requires only a single link to be

active for proper functioning, while still offering server-uplink redundancy if the active link

goes down.

During steady state, only the active link forwards traffic in such a design. This is enforced

by sending LACP out of sync PDUs over the member interface of the LAG on the non-DF

VTEP. SR Linux also supports powering off the port (by shutting off the laser) in cases

where the server does not support LACP.

If the active link goes down, the directly connected VTEP (which was the DF for that

Ethernet Segment) withdraws its EVPN Type-4 route, triggering the peer VTEP to move

from non-DF to DF. The new DF now starts sending LACP in sync PDUs, causing the

connected server interface to be bundled back into the LAG, which can now actively

forward traffic.

Like all-active, the configuration of single-active ES-based LAG includes the following:

- Mapping physical interface to a LAG interface

- Configuring the LAG interface with required LACP parameters

- Configuring subinterfaces within the LAG interface to accept tagged or untagged

Layer 2 packets as required

- Configuring an Ethernet Segment (and all required parameters) and mapping it to

the respective LAG interface (notably, the multi-homing-mode configuration

option is set to single-active)

- The Ethernet Segment is configured on the active node with a higher preference,

with a preference-based algorithm being used for Designated Forwarder (DF)

election.

- The interface-standby-signaling-on-non-df configuration is set under the df-

election hierarchy. This sends a LACP out-of-sync on non-DF nodes, keeping the

server links connected to the non-DF nodes in a down state.

- The Designated Forwarder election activation timer is set to 0 (the default timer is

3 seconds). This timer controls the delay of transition from non-DF to DF.

// physical interface mapped to LAG interface

https://www.ietf.org/archive/id/draft-ietf-bess-evpn-mh-pa-10.html

NVD 3-stage EVPN/VXLAN Fabric

25 3HE-21632-AAAA-TQZZA

Issue 1

A:leaf5# info interface ethernet-1/2
 interface ethernet-1/2 {
 description leaf5-leaf6-lag1
 admin-state enable
 ethernet {
 aggregate-id lag1
 lacp-port-priority 32768
 reload-delay 100
 }
 }

// configuration of LAG interface

A:leaf5# info interface lag1
 interface lag1 {
 description leaf5-leaf6-lag1
 admin-state enable
 vlan-tagging true
 ethernet {
 standby-signaling lacp
 }
 subinterface 60 {
 type bridged
 admin-state enable
 vlan {
 encap {
 single-tagged {
 vlan-id 60
 }
 }
 }
 }
 subinterface 4096 {
 type bridged
 admin-state enable
 vlan {
 encap {
 untagged {
 }
 }
 }
 }
 lag {
 lag-type lacp
 min-links 1
 lacp-fallback-mode static
 lacp-fallback-timeout 60
 lacp {
 interval FAST
 lacp-mode ACTIVE
 admin-key 2
 system-id-mac 00:00:00:00:55:66
 system-priority 32768
 }
 }
 }

// Ethernet Segment configuration on active VTEP

A:leaf5# info system network-instance protocols
 system {
 network-instance {
 protocols {
 evpn {
 ethernet-segments {

NVD 3-stage EVPN/VXLAN Fabric

26 3HE-21632-AAAA-TQZZA

Issue 1

 bgp-instance 1 {
 ethernet-segment leaf5-leaf6-lag1 {
 admin-state enable
 esi 00:00:00:00:00:55:66:00:00:00
 multi-homing-mode single-active
 interface lag1 {
 }
 df-election {
 timers {
 activation-timer 0
 }
 interface-standby-signaling-on-non-df {
 }
 algorithm {
 type preference
 preference-alg {
 preference-value 800
 capabilities {
 non-revertive true
 }
 }
 }
 }
 }
 }
 }
 }
 bgp-vpn {
 bgp-instance 1 {
 }
 }
 }
 }
 }

// Ethernet Segment configuration on standby VTEP

A:leaf6# info system network-instance protocols
 system {
 network-instance {
 protocols {
 evpn {
 ethernet-segments {
 bgp-instance 1 {
 ethernet-segment leaf5-leaf6-lag1 {
 admin-state enable
 esi 00:00:00:00:00:55:66:00:00:00
 multi-homing-mode single-active
 interface lag1 {
 }
 df-election {
 timers {
 activation-timer 0
 }
 interface-standby-signaling-on-non-df {
 }
 algorithm {
 type preference
 preference-alg {
 preference-value 500
 capabilities {
 non-revertive true
 }
 }
 }

NVD 3-stage EVPN/VXLAN Fabric

27 3HE-21632-AAAA-TQZZA

Issue 1

 }
 }
 }
 }
 }
 bgp-vpn {
 bgp-instance 1 {
 }
 }
 }
 }
 }

// LAG interface state on active VTEP

A:leaf5# show lag lag1 lacp-state | as yaml

LacpHeader:
 - Lag Id: lag1
 LacpBrief:
 Interval: FAST
 Mode: ACTIVE
 System Id: '00:00:00:00:55:66'
 System Priority: 32768
 LacpState:
 - Members: ethernet-1/2
 Oper state: up
 Activity: ACTIVE
 Timeout: SHORT
 State: IN_SYNC/True/True/True
 System Id: '00:00:00:00:55:66'
 Oper key: 2
 Partner Id: '00:00:00:00:99:99'
 Partner Key: 32769
 Port No: 1
 Partner Port No: 5

// LAG interface state on standby VTEP

A:leaf6# show lag lag1 lacp-state | as yaml

LacpHeader:
 - Lag Id: lag1
 LacpBrief:
 Interval: FAST
 Mode: ACTIVE
 System Id: '00:00:00:00:55:66'
 System Priority: 32768
 LacpState:
 - Members: ethernet-1/1
 Oper state: down(lacp-down)
 Activity: ACTIVE
 Timeout: SHORT
 State: OUT_SYNC/True/False/False
 System Id: '00:00:00:00:55:66'
 Oper key: 2
 Partner Id: '00:00:00:00:99:99'
 Partner Key: 32769
 Port No: 1
 Partner Port No: 6

Example 10. Configuration of single-active ES-based LAG

 Active/backup with no Link Aggregation Group (LAG)

NVD 3-stage EVPN/VXLAN Fabric

28 3HE-21632-AAAA-TQZZA

Issue 1

Active/backup functionality and convergence is tested by using a server with two NICs

(one to each leaf/VTEP) configured for Linux bond mode 1 (active/backup). The NICs

function without being aggregated into a Link Aggregation Group (LAG), with one NIC

being the active link passing traffic from the server. From the perspective of the leafs

(VTEPs), the convergence is purely a function of MAC mobility since only the link towards

the active NIC of the server will be receiving traffic at any given time.

// sample configuration from an Ubuntu 22.04 server for active/backup bond mode
// to make this persistent, configure using netplan instead

sudo ip link add bond0 type bond mode active-backup primary ens5f0np0
sudo ip link set bond0 type bond miimon 100
sudo ip link set ens5f0np0 down
sudo ip link set ens5f1np1 down
sudo ip link set ens5f0np0 master bond0
sudo ip link set ens5f1np1 master bond0
sudo ip addr add 172.16.10.10/24 dev bond0
sudo ip link set ens5f0np0 up
sudo ip link set ens5f1np1 up
sudo ip link set bond0 up
sudo ip route add 0.0.0.0/24 via 172.16.10.254

// interface configuration from leaf5 and leaf6 (VTEPs to which server is attached)

A:leaf5# info interface ethernet-1/5
 interface ethernet-1/5 {
 admin-state disable
 vlan-tagging true
 subinterface 4096 {
 type bridged
 admin-state enable
 vlan {
 encap {
 untagged {
 }
 }
 }
 }
 }

A:leaf6# info interface ethernet-1/5
 interface ethernet-1/5 {
 admin-state enable
 vlan-tagging true
 subinterface 4096 {
 type bridged
 admin-state enable
 vlan {
 encap {
 untagged {
 }
 }
 }
 }
 }

Example 11. Configuration of active/backup (Linux bond mode 1) server connectivity

with no LAG

NVD 3-stage EVPN/VXLAN Fabric

29 3HE-21632-AAAA-TQZZA

Issue 1

 Layer 3 server-facing interfaces

Layer 3 server-facing interfaces are commonly deployed for cloud-native environments,

enabling an end-to-end routing design. While the NVD is tested using static routes

configured on a leaf to container subnets behind a Layer 3 attached server (these static

routes are exported into the fabric as EVPN Type-5 routes and distributed to other VTEPs

using BGP EVPN), you can also choose to run BGP between the leaf and the server for

dynamic exchange of routes.

The Layer 3 interface is mapped to its respective IP VRF with static routes for subnets

behind the container defined within this IP VRF.

A:d4-leaf4# info interface ethernet-1/3
 interface ethernet-1/3 {
 admin-state enable
 subinterface 4097 {
 type routed
 description d4-leaf4-l3-1
 admin-state enable
 ip-mtu 9200
 ipv4 {
 admin-state enable
 address 172.16.100.0/31 {
 primary
 }
 arp {
 timeout 250
 }
 }
 }
 }

A:d4-leaf4# info network-instance vrf1
 network-instance vrf1 {
 type ip-vrf
 admin-state enable
 description vrf1
 interface ethernet-1/3.4097 {
 }

snip

A:d4-leaf4# info network-instance vrf1 static-routes
 network-instance vrf1 {
 static-routes {
 route 172.16.92.0/22 {
 admin-state enable
 next-hop-group static-d4-leaf4
 }
 }
 }

A:d4-leaf4# info network-instance vrf1 next-hop-groups group static-d4-leaf4
 network-instance vrf1 {
 next-hop-groups {
 group static-d4-leaf4 {
 admin-state enable
 nexthop 0 {
 ip-address 172.16.100.1
 admin-state enable

NVD 3-stage EVPN/VXLAN Fabric

30 3HE-21632-AAAA-TQZZA

Issue 1

 resolve false
 }
 }
 }
 }

Example 12. Configuration of Layer 3 server-facing interface

 IRB interfaces

IRB interfaces are configured in an anycast, distributed gateway model with each leaf

using the same IP address and MAC address (auto derived; in this case, using the VRRP

MAC address range, as part RFC 9135). The IRB subinterfaces are also enabled with L3

proxy-ARP, with BGP EVPN configured to advertise entries in the ARP table as EVPN Type-

2 routes. The ARP timeout, for each IRB subinterface, is configured to be lower than the

default MAC addressing aging timer (300 seconds).

These IRB interfaces are the default gateways for the servers.

// IRB subinterface

A:leaf1# info interface irb0 subinterface 0
 interface irb0 {
 subinterface 0 {
 ip-mtu 9200
 ipv4 {
 admin-state enable
 address 172.16.30.254/24 {
 anycast-gw true
 primary
 }
 arp {
 timeout 250
 learn-unsolicited true
 proxy-arp true
 evpn {
 advertise dynamic {
 }
 }
 }
 }
 anycast-gw {
 virtual-router-id 1
 }
 }
 }

Example 13. Configuration of IRB interfaces on leaf nodes

 VXLAN tunnels

VXLAN tunnels are created as tunnel interfaces on SR Linux, where each subinterface is

mapped to a bridged VNI (L2VNI) or routed VNI (L3VNI). A sample configuration is provided

below, demonstrating a bridged tunnel and a routed tunnel. These bridged and routed

tunnel interfaces are associated to their corresponding network instances – bridged

NVD 3-stage EVPN/VXLAN Fabric

31 3HE-21632-AAAA-TQZZA

Issue 1

VXLAN tunnel interfaces for MAC VRFs (Layer 2) and routed VXLAN interfaces to IP VRFs

(Layer 3).

// Bridged and routed VXLAN tunnels

A:leaf1# info tunnel-interface vxlan0 vxlan-interface {505,506}
 tunnel-interface vxlan0 {
 vxlan-interface 505 {
 type bridged
 ingress {
 vni 10060
 }
 egress {
 source-ip use-system-ipv4-address
 }
 }
 vxlan-interface 506 {
 type routed
 ingress {
 vni 10501
 }
 egress {
 source-ip use-system-ipv4-address
 }
 }
 }

Example 14. Configuration of bridged and routed VXLAN tunnel interfaces

 MAC VRFs

MAC VRFs are created for Layer 2 isolation. These MAC VRFs are mapped to a bridged

VXLAN tunnel-interface and the bridge domains’ corresponding IRB interface, along with

the required Layer 2 server-facing subinterfaces (these can be subinterfaces of a physical

or LAG interface). Every MAC VRF is associated with a corresponding import and export

Route Target which facilitates the import and export of BGP EVPN routes for this MAC

VRF. In addition to this, MAC VRFs are configured with the following options:

- For overlay ECMP, the ecmp configuration option is used and set to a value of 8.

- The configuration option advertise-arp-nd-only-with-mac-table-entry is set to

true. This is necessary for multihoming segments, without which misleading MAC

mobility events might occur.

- Each MAC VRF is enabled with the default duplicate MAC detection timers.

// VLAN-based MAC VRF configuration

A:leaf1# info network-instance macvrf-v10
 network-instance macvrf-v10 {
 type mac-vrf
 admin-state enable
 description macvrf-v10
 interface ethernet-1/1.4096 {
 }
 interface irb0.4 {
 }
 interface lag1.4096 {

NVD 3-stage EVPN/VXLAN Fabric

32 3HE-21632-AAAA-TQZZA

Issue 1

 }
 vxlan-interface vxlan0.500 {
 }
 protocols {
 bgp-evpn {
 bgp-instance 1 {
 vxlan-interface vxlan0.500
 evi 10
 ecmp 8
 routes {
 bridge-table {
 mac-ip {
 advertise-arp-nd-only-with-mac-table-entry true
 }
 }
 }
 }
 }
 bgp-vpn {
 bgp-instance 1 {
 route-target {
 export-rt target:1:10
 import-rt target:1:10
 }
 }
 }
 }
 bridge-table {
 mac-learning {
 admin-state enable
 aging {
 admin-state enable
 age-time 300
 }
 }
 mac-duplication {
 admin-state enable
 monitoring-window 3
 num-moves 5
 hold-down-time 9
 action stop-learning
 }
 }
 }

Example 15. Configuration of MAC VRFs

 IP VRFs

IP VRFs are used for Layer 3 isolation and to enable the use of a common, physical

infrastructure for multiple, logically isolated tenants/services. The respective IRB

subinterfaces are mapped to their corresponding IP VRFs along with a routed VXLAN

tunnel-interface (which is the L3VNI for that IP VRF).

Like MAC VRFs, each IP VRF is associated with an export and import Route Target.

// IP VRF configuration

A:leaf1# info network-instance vrf1
 network-instance vrf1 {
 type ip-vrf

NVD 3-stage EVPN/VXLAN Fabric

33 3HE-21632-AAAA-TQZZA

Issue 1

 admin-state enable
 description vrf1
 interface irb0.0 {
 }
 interface irb0.2 {
 }
 interface irb0.4 {
 }
 interface irb0.5 {
 }
 vxlan-interface vxlan0.507 {
 }
 protocols {
 bgp-evpn {
 bgp-instance 1 {
 vxlan-interface vxlan0.507
 evi 500
 ecmp 8
 routes {
 route-table {
 mac-ip {
 advertise-gateway-mac true
 }
 }
 }
 }
 }
 bgp-vpn {
 bgp-instance 1 {
 route-target {
 export-rt target:1:500
 import-rt target:1:500
 }
 }
 }
 }
 }

Example 16. Configuration of IP VRFs

 Node isolation

Node isolation is used in situations where a VTEP loses its core-facing uplinks while

retaining server-facing downlinks. For dual-homed servers, this can create a situation

where an alternate path is available but may not be used since traffic is hashed to an

impacted leaf node.

In SR Linux v24.10.2, node isolation is implemented using the combination of a user-

defined upython script (provided in its entirety below) and event-handlers that leverage

operational groups. The idea is to monitor the number and state of BGP EVPN peers on a

VTEP that has downstream LAG interfaces mapped to an Ethernet Segment. If all BGP

EVPN peers are down (i.e. there are no BGP EVPN peers in an Established state), then the

tracked downstream interfaces are brought down as well.

// SRL event-handler that tracks BGP EVPN state and takes appropriate action when triggered on
specified down-links

A:leaf1# info system event-handler

NVD 3-stage EVPN/VXLAN Fabric

34 3HE-21632-AAAA-TQZZA

Issue 1

 system {
 event-handler {
 instance overlay-bgp {
 admin-state enable
 upython-script node-isolation.py
 paths [
 "network-instance default protocols bgp neighbor * session-state"
]
 options {
 object down-links {
 values [
 ethernet-1/3
]
 }
 object hold-down-time {
 value 20000
 }
 object required-bgp-sessions-established {
 value 1
 }
 }
 }
 }
 }

// Node isolation upython script stored in the path /etc/opt/srlinux/eventmgr where all user-
defined scripts are expected to be stored

admin@leaf1:/etc/opt/srlinux/eventmgr$ pwd
/etc/opt/srlinux/eventmgr

admin@leaf1:/etc/opt/srlinux/eventmgr$ cat node-isolation.py
import sys
import json

count_bgp_sessions_established returns the number of monitored BGP sessions that are
established {established=up}
def count_bgp_sessions_established(paths):
 up_cnt = 0
 for path in paths:
 if path.get("value") == "established":
 up_cnt = up_cnt + 1
 return up_cnt

required_bgp_sessions_established returns the value of the `required-bgp-sessions-established`
option
def required_bgp_sessions_established(options):
 return int(options.get("required-bgp-sessions-established", 1))

hold down timer after recovery
def hold_time(options):
 return int(options.get('hold-down-time', '0'))

def bool_to_oper_state(val):
 return ('down','up')[bool(val)]

main entry function for event handler
def event_handler_main(in_json_str):
 # parse input json string passed by event handler
 in_json = json.loads(in_json_str)
 paths = in_json["paths"]
 options = in_json["options"]
 persist = in_json.get('persistent-data', {})

 num_up_bgp_sessions = count_bgp_sessions_established(paths)

NVD 3-stage EVPN/VXLAN Fabric

35 3HE-21632-AAAA-TQZZA

Issue 1

 downlink_should_be_up = required_bgp_sessions_established(options) <= num_up_bgp_sessions
 needs_hold_down = False

 # down->up transition will be held for optional hold-time
 if (hold_time(options) > 0) and downlink_should_be_up:
 needs_hold_down = persist.get("last-state", "up") == "down"

 if options.get("debug") == "true":
 print(
 f"hold down time = {hold_time(options)}ms\n\
num of required bgp_sessions = {required_bgp_sessions_established(options)}\n\
detected num of bgp_sessions = {num_up_bgp_sessions}\n\
downlinks new state = {bool_to_oper_state(downlink_should_be_up)}\n\
needs_hold_down = {str(needs_hold_down)}"
)

 response_actions = []

 oper_state_str = bool_to_oper_state(not needs_hold_down and downlink_should_be_up)
 for downlink in options.get('down-links'):
 response_actions.append({'set-ephemeral-path' : {'path':'interface {0} oper-
state'.format(downlink),'value':oper_state_str}})

 if needs_hold_down:
 response_actions.append({'reinvoke-with-delay' : hold_time(options)})
 response_persistent_data = {'last-state':bool_to_oper_state(downlink_should_be_up)}

 response = {'actions':response_actions,'persistent-data':response_persistent_data}
 return json.dumps(response)

Example 17. Node isolation upython script and SRL event-handler configuration

5 Test summary

 Feature matrix

Feature SRL 24.10.2 EDA 24.12.1

 Validation State EDA Configlets

IPv6 link-local addressing with IPv6

ND for fabric underlay

Validated Validated No

Advertise and receive BGP IPv4

NLRIs with IPv6 next hops (RFC

8950)

Validated Validated No

MP-BGP style eBGP peering for

underlay and overlay routes

Validated Validated Yes

2-byte BGP ASN support Validated Validated No

Routing policies for underlay and

overlay

Validated Validated No

NVD 3-stage EVPN/VXLAN Fabric

36 3HE-21632-AAAA-TQZZA

Issue 1

Sub-second BFD convergence

(750ms)
Validated Validated No

LLDP Validated Validated No

Layer 2 untagged server-facing

interfaces

Validated Validated No

Layer 2 tagged server-facing

interfaces

Validated Validated No

Layer 3 server-facing interfaces Validated Validated No

Jumbo MTU Validated Validated No

Anycast GWs Validated Validated No

ESI-based LAG in all-active mode Validated Validated Yes

ESI-based LAG in single-active mode Validated Validated Yes

Active/backup server link

connectivity with no LAG

Validated Validated No

ECMP for underlay and overlay Validated Validated No

Asymmetric IRB routing Validated Validated No

Symmetric IRB routing with Type-5 Validated Validated No

VLAN-based MAC VRFs Validated Validated Yes

IP VRFs Validated Validated No

Node isolation Validated Validated Yes

gNMI-based telemetry Validated Validated No

Table 2. Feature matrix

Test Description Approximate

convergence time

BGP reset Traffic flows are enabled, BGP peers are reset,

and traffic convergence is measured.

39.5ms

Active/Backup with no

Link Aggregation Group

(LAG)

Dual links on a server are configured with Linux

bond mode 1 (active/backup). This implies that

the NICs function without being aggregated

into a LAG, and simply in an active/backup

fashion. The active link is shut down and the

traffic convergence time is measured

50ms

NVD 3-stage EVPN/VXLAN Fabric

37 3HE-21632-AAAA-TQZZA

Issue 1

(convergence is purely a function of EVPN MAC

mobility)

4-way ES-based LAG in

all-active mode (ingress

VTEP local-bias

forwarding)

4-way all-active ES-based LAG is configured and

E-W traffic flows are enabled. Traffic exits the

local interface (part of ES) of ingress VTEP (as

part of local-bias forwarding). During this state,

the local exit interface is shut down and the

convergence time is measured for traffic to

move to a remote VTEP over the fabric.

33.6ms

4-way ES-based LAG in

all-active mode (ES

interface down

convergence)

4-way all-active ES-based LAG is configured and

E-W traffic flows are enabled. Traffic enters

ingress leaf on a L2/L3 single-homed interface

and exits a remote VTEP on an ethernet

segment. During this state, the exit interface is

shut down on egress leaf and the convergence

time is measured.

5.9ms

2-way ESI-based LAG in

single-active mode

2-way single-active ESI-LAG is configured with

E-W traffic flowing through the active VTEP.

During this steady state, the active ES member

interface is shut down and the convergence

time is measured

100-200ms

Leaf reboot with E-W

traffic

Inter-VLAN and intra-VLAN traffic is flowing

from the source interface on an ingress leaf

(VTEP) to a destination interface on an egress

leaf (VTEP). During this steady state, the ingress

leaf (VTEP) is rebooted and the convergence

time is measured.

165 seconds

Spine reboot with dual

spines connected and

active

E-W traffic is flowing through the fabric with

some flows hashed to spine1 and others to

spine2. During this steady state, spine1 is

rebooted and convergence time is measured

for all traffic that was flowing through spine1.

26.06ms

Spine reboot with single

spine connected and

active

E-W traffic is flowing through the fabric via the

only spine that is connected and active. During

this state, the spine is rebooted and the

convergence time is measured.

215 seconds

MAC mobility
Flap the ports so the MAC address moves from

local to remote and vice versa, and observe the

convergence time.

24.6ms

Table 3. Traffic convergence metrics

6 EDA integration

 EDA architecture

Nokia’s Event Driven Automation (EDA) platform is a cloud-native platform deployed on

top of Kubernetes, leveraging the Kubernetes-provided declarative API, tooling, and the

ecosystem around it. EDA can be deployed as a single or multimode cluster.

NVD 3-stage EVPN/VXLAN Fabric

38 3HE-21632-AAAA-TQZZA

Issue 1

The various components of the EDA/K8s tech stack are shown below, instantiated as

Kubernetes pods.

:~$ kubectl get pods -A
NAMESPACE NAME READY STATUS RESTARTS
cert-manager cert-manager-767c6596b-4xfnj 1/1 Running 1
cert-manager cert-manager-cainjector-78f86bf99f-d8pj4 1/1 Running 1
cert-manager cert-manager-webhook-5b8cb89ffc-pvlt7 1/1 Running 1
eda-system cert-manager-csi-driver-6t9vj 3/3 Running 3
eda-system eda-api-9985cb78-cn689 1/1 Running 1
eda-system eda-appstore-5db7b8c746-7hwzn 1/1 Running 1
eda-system eda-asvr-68bc7c86b6-7cz8r 1/1 Running 1
eda-system eda-bsvr-6bf77b64c-6mk85 1/1 Running 1
eda-system eda-ce-5c8d5b5969-h5qgr 1/1 Running 1
eda-system eda-fe-547cb647df-tm2c6 1/1 Running 1
eda-system eda-fluentbit-txn7r 1/1 Running 1
eda-system eda-fluentd-54cf4bd5d7-4kn4f 1/1 Running 1
eda-system eda-git-754df68df5-lqqfd 1/1 Running 1
eda-system eda-git-replica-784dbdbfc8-j8fjb 1/1 Running 1
eda-system eda-keycloak-6b5655dbcc-h2g4c 1/1 Running 0
eda-system eda-metrics-server-7c495c6bf-575dj 1/1 Running 1
eda-system eda-npp-eda-d3-leaf5 1/1 Running 0
eda-system eda-npp-eda-d3-leaf6 1/1 Running 0
eda-system eda-npp-eda-d4-leaf3 1/1 Running 0
eda-system eda-npp-eda-d4-leaf4 1/1 Running 0
eda-system eda-npp-eda-d5-leaf1 1/1 Running 0
eda-system eda-npp-eda-d5-leaf2 1/1 Running 0
eda-system eda-npp-eda-spine1 1/1 Running 0
eda-system eda-npp-eda-spine2 1/1 Running 0
eda-system eda-postgres-5c8dc78fbf-vmjz4 1/1 Running 0
eda-system eda-sa-576c98865f-44lwb 1/1 Running 1
eda-system eda-sc-84546648c5-5ncgh 1/1 Running 1
eda-system eda-se-1 1/1 Running 1
eda-system eda-toolbox-84c95bd8c6-ptbt4 1/1 Running 1
eda-system trust-manager-567f4b65fb-4dllq 1/1 Running 1
kube-system coredns-6f6b679f8f-9m8rx 1/1 Running 1
kube-system coredns-6f6b679f8f-gvjf8 1/1 Running 1
kube-system etcd-eda-demo-control-plane 1/1 Running 1
kube-system kindnet-d5sbh 1/1 Running 1
kube-system kube-apiserver-eda-demo-control-plane 1/1 Running 1
kube-system kube-controller-manager-eda-demo-control-plane 1/1 Running 1
kube-system kube-proxy-s7rv6 1/1 Running 1
kube-system kube-scheduler-eda-demo-control-plane 1/1 Running 1
local-path-storage local-path-provisioner-57c5987fd4-m5p4p 1/1 Running 1
metallb-system controller-fbf54885d-8j5qf 1/1 Running 1
metallb-system speaker-g74r6 1/1 Running 2

Example 18. EDA namespaces and pods

Some of the more commonly used pods and their functionalities are listed below:

• eda-asvr - the artifact server stores common artifacts used in EDA functionality.

Examples include SRLinux image, SRL MD5 hash, yang path.zip, and so forth. The

availability of an artifact can be verified with “kubectl get artifacts -A”.

• eda-bsvr – the bootstrap server is responsible for all onboarding of nodes (virtual

or hardware). This involves gNMI discovery, gNMI management, and instantiation of

NPP pods for node lifecycle management.

NVD 3-stage EVPN/VXLAN Fabric

39 3HE-21632-AAAA-TQZZA

Issue 1

• eda-ce – the configuration engine keeps track of all the dependencies amongst the

application resources and runs the application intents when needed.

• eda-npp – the eda-npp pod is responsible for schema validation of the generated

configuration. Additionally, it is responsible for all communications to the devices

for both setting configuration and retrieving state.

• eda-api – the eda-api pod is the REST API server which is accessible to end users

and is consumed by the GUI.

• eda-cx – sandbox controller that spins up simulated nodes for building digital twins

of the fabric (the example above has the mode set to physical hardware only,

hence the EDA CX functionality has been disabled)

• eda-toolbox – provides tools such as edactl for insight into EDA transactions and

EDA topology generator that can generate a topology from a YAML file

Figure 12 demonstrates the high-level workflow required to build the prescriptive 3-stage

EVPN VXLAN NVD. The resources shown can be created using either the EDA UI or natively

using Kubernetes manifest files.

Figure 12. EDA workflow

Once this workflow is completed with all nodes onboarded and the fabric fully deployed,

the topology can be viewed by navigating to Main -> Topologies -> Physical. See Figure

13 for reference.

NVD 3-stage EVPN/VXLAN Fabric

40 3HE-21632-AAAA-TQZZA

Issue 1

Figure 13. 3-stage EVPN VXLAN NVD fabric onboarded and deployed in EDA

 EDA onboarding with ZTP

EDA has the capability to onboard fabric nodes via Zero Touch Provisioning (ZTP). EDA, as

the ZTP server, can fully automate the end-to-end deployment of Nokia SRL nodes.

Nodes which are in a factory default state only need to be plugged into the out-of-band

(OOB) infrastructure and EDA can onboard the devices, along with pushing expected

configuration (based on user intent) to them.

Figure 14 provides a high-level overview of the ZTP workflow and Example 19 displays

console logs from a Nokia 7220 IXR-D4 being onboarded.

Figure 14. ZTP workflow

NVD 3-stage EVPN/VXLAN Fabric

41 3HE-21632-AAAA-TQZZA

Issue 1

2024:12:24 12:08:36:51 | EVENT | ZTP Perform DHCP_V4
2024:12:24 12:08:36:72 | EVENT | Received dhcp lease on mgmt0 for 192.168.70.3/24, from server
100.116.161.50
2024:12:24 12:08:36:83 | EVENT | option 67 provided by dhcp:
http://100.116.161.50:9200/core/httpproxy/v1/asvr/eda/init-base/bootscript-d4-leaf4/d4-leaf4-
provision.py
2024:12:24 12:08:36:99 | EVENT | Updated hostname to d4-leaf4
2024:12:24 12:08:36:99 | EVENT | option 67 provided by dhcp:
http://100.116.161.50:9200/core/httpproxy/v1/asvr/eda/init-base/bootscript-d4-leaf4/d4-leaf4-
provision.py
2024:12:24 12:08:36:99 | EVENT | Url to fetch provisioning script:
http://100.116.161.50:9200/core/httpproxy/v1/asvr/eda/init-base/bootscript-d4-leaf4/d4-leaf4-
provision.py
2024:12:24 12:08:36:99 | EVENT | Executing provisioning script
2024:12:24 12:08:37:06 | EVENT | Downloaded provisioning script to
/etc/opt/srlinux/ztp/script/provision.py
2024:12:24 12:09:07:61 | EVENT | Upgrade failed: Recv failure: Connection reset by peer
2024:12:24 12:09:24:17 | EVENT | Installing image. Url:
http://100.116.161.50:9200/core/httpproxy/v1/asvr/eda-system/srlimages/srlinux-24.10.1-
bin/srlinux.bin
2024:12:24 12:09:32:34 | EVENT | Version of new image 24.10.1-492
2024:12:24 12:09:32:34 | EVENT | Current version: 24.10.1-492, New version: 24.10.1-492
2024:12:24 12:09:32:34 | EVENT | New image version 24.10.1-492 is same as active version 24.10.1-
492
2024:12:24 12:09:32:34 | EVENT | Not performing image upgrade
2024:12:24 12:09:37:61 | EVENT | Srlinux is running
2024:12:24 12:09:38:81 | EVENT | Execution of /etc/opt/srlinux/ztp/script/provision.py completed
with exit code 0
2024:12:24 12:09:38:81 | EVENT | Provisioning script execution successful
2024:12:24 12:09:38:82 | EVENT | Completed ZTP process

Example 19. Console logs on a Nokia 7220 IXR-D4 during successful ZTP onboarding

 EDA Kubernetes workflow for NVD deployment

This section describes various manifest files that can be used to deploy an EDA-

orchestrated EVPN VXLAN fabric in accordance with the prescriptive validated design

described in this document.

6.3.1 EDA artifacts for SR Linux version 24.10.2

Kubernetes artifacts are created for target SR Linux version and used in the EDA node

profile, Custom Resource. This includes the creation of manifest files for the .bin image,

the md5 hash file, and the YAML zip file - samples of which are shown below.

artifacts for 24.10.2

apiVersion: artifacts.eda.nokia.com/v1

kind: Artifact

metadata:

 name: srlinux-24.10.2-bin

 namespace: eda-system

spec:

 repo: srlimages

 filePath: srlinux.bin

 remoteFileUrl:

 fileUrl: https://{file-path}/srlinux-24.10.2-357.bin

http://100.116.161.50:9200/core/httpproxy/v1/asvr/eda/init-base/bootscript-d4-leaf4/d4-leaf4-provision.py
http://100.116.161.50:9200/core/httpproxy/v1/asvr/eda/init-base/bootscript-d4-leaf4/d4-leaf4-provision.py
http://100.116.161.50:9200/core/httpproxy/v1/asvr/eda/init-base/bootscript-d4-leaf4/d4-leaf4-provision.py
http://100.116.161.50:9200/core/httpproxy/v1/asvr/eda/init-base/bootscript-d4-leaf4/d4-leaf4-provision.py
http://100.116.161.50:9200/core/httpproxy/v1/asvr/eda/init-base/bootscript-d4-leaf4/d4-leaf4-provision.py
http://100.116.161.50:9200/core/httpproxy/v1/asvr/eda/init-base/bootscript-d4-leaf4/d4-leaf4-provision.py
http://100.116.161.50:9200/core/httpproxy/v1/asvr/eda-system/srlimages/srlinux-24.10.1-bin/srlinux.bin
http://100.116.161.50:9200/core/httpproxy/v1/asvr/eda-system/srlimages/srlinux-24.10.1-bin/srlinux.bin

NVD 3-stage EVPN/VXLAN Fabric

42 3HE-21632-AAAA-TQZZA

Issue 1

apiVersion: artifacts.eda.nokia.com/v1

kind: Artifact

metadata:

 name: srlinux-24.10.2-md5

 namespace: eda-system

spec:

 repo: srlimages

 filePath: srlinux.md5

 remoteFileUrl:

 fileUrl: https://{file-path}/srlinux-24.10.2-357.bin.md5

apiVersion: artifacts.eda.nokia.com/v1

kind: Artifact

metadata:

 name: srlinux-24.10.2

 namespace: eda-system

spec:

 repo: schemaprofiles

 filePath: srlinux-24.10.2.zip

 remoteFileUrl:

 fileUrl: https://{file-path}/srlinux-24.10.2-357.zip

Example 20. EDA artifact manifest

6.3.2 Subnet allocation for management of SR Linux fabric nodes

A manifest file is created to instantiate an IPv4/IPv6 subnet pool for the management of

SR Linux fabric nodes.

subnet allocation for IPv4 mgmt of SRL nodes

apiVersion: core.eda.nokia.com/v1

kind: IPInSubnetAllocationPool

metadata:

 name: hw-ipv4-mgmt-pool

 namespace: eda

spec:

 segments:

 - subnet: 192.168.70.0/24

 allocations:

 - name: gateway$$

 value: 192.168.70.1/24

subnet allocation for IPv6 mgmt of SRL nodes

apiVersion: core.eda.nokia.com/v1

kind: IPInSubnetAllocationPool

metadata:

 name: hw-ipv6-mgmt-pool

 namespace: eda

spec:

NVD 3-stage EVPN/VXLAN Fabric

43 3HE-21632-AAAA-TQZZA

Issue 1

 segments:

 - subnet: fd00:192:168:70::/64

 allocations:

 - name: gateway$$

 value: fd00:192:168:70:250::ffff/64

Example 21. EDA subnet and IP pool allocation manifest

6.3.3 EDA node profile for node onboarding

An EDA node profile facilitates the onboarding of fabric nodes, including the

username/password for authentication into the node, a DHCP scope for assignment, and

image version check (the node profile image is the expected target image).

node profile for 24.10.2

apiVersion: core.eda.nokia.com/v1

kind: NodeProfile

metadata:

 name: real-srlinux-24.10.2

 namespace: eda

spec:

 dhcp:

 managementPoolv4: hw-ipv4-mgmt-pool

 images:

 - image: eda-system/srlimages/srlinux-24.10.2-bin/srlinux.bin

 imageMd5: eda-system/srlimages/srlinux-24.10.2-md5/srlinux.md5

 nodeUser: admin

 onboardingUsername: "admin"

 onboardingPassword: "NokiaSrl1!"

 operatingSystem: srl

 port: 57400

 version: 24.10.2

 versionMatch: v24\.10\.2.*

 versionPath: .system.information.version

 yang: https://eda-asvr.eda-system/eda-system/schemaprofiles/srlinux-24.10.2/srlinux-24.10.2.zip

Example 22. Node profile

6.3.4 Modify existing init-base CR to save on commit for SR Linux nodes

The existing init-base custom resource is modified to set commitSave to true so that SR

Linux fabric nodes save to startup configuration on commit.

modify exiting init-base CR to set commitSave to true

apiVersion: bootstrap.eda.nokia.com/v1alpha1

kind: Init

metadata:

 name: init-base

 namespace: eda

spec:

NVD 3-stage EVPN/VXLAN Fabric

44 3HE-21632-AAAA-TQZZA

Issue 1

 commitSave: true

 mgmt:

 ipv4DHCP: true

 ipv6DHCP: true

Example 23. Resource to enable commit save to startup

6.3.5 Create node user to manage SR Linux nodes from EDA

The following example manifest file demonstrates how a node user is modified for

management of SR Linux nodes from EDA. The nodeSelector label determines which

nodes are allowed to be managed – an empty value selects all, as shown below.

node user for SRL node management
this modifies the default admin node user shipped with EDA v24.12.1
apiVersion: core.eda.nokia.com/v1
kind: NodeUser
metadata:
 name: admin
 namespace: eda
spec:
 groupBindings:
 - groups:
 - sudo
 nodeSelector:
 - ""
 password: NokiaSrl1!
 username: admin

Example 24. Node management

6.3.6 Onboarding nodes in EDA with using a TopoNode Custom Resource

SR Linux nodes can be onboarded into EDA using the TopoNode custom resource. This

includes the creation of labels as metadata that will be attached to the node (these labels

are used as selectors when deploying the fabric), a node profile name, the platform, and

serial number of the node. See Example 25 for reference.

apiVersion: core.eda.nokia.com/v1

kind: TopoNode

metadata:

 labels:

 eda.nokia.com/hostname: spine2

 eda.nokia.com/role: spine

 eda.nokia.com/security-profile: managed

 name: spine2

 namespace: eda

spec:

 nodeProfile: real-srlinux-24.10.2

NVD 3-stage EVPN/VXLAN Fabric

45 3HE-21632-AAAA-TQZZA

Issue 1

 npp:

 mode: normal

 onBoarded: false

 operatingSystem: srl

 platform: "7220 IXR-H4"

 version: 24.10.2

 serialNumber: {serial-number}

Example 25. TopoNode resource for node metadata

6.3.7 Building ASN pools for leafs and spines of the fabric

The following manifest file demonstrates how ASN pools can be built to be used during

fabric deployment. In this case, two pools are created: leaf-asn and spine-asn.

ASN pool creation for leafs

apiVersion: core.eda.nokia.com/v1

kind: IndexAllocationPool

metadata:

 name: leaf-asn

 namespace: eda

spec:

 segments:

 - start: 65411

 size: 20

ASN pool creation for spines

apiVersion: core.eda.nokia.com/v1

kind: IndexAllocationPool

metadata:

 name: spine-asn

 namespace: eda

spec:

 segments:

 - start: 65500

 size: 10

Example 26. ASN pool allocation

6.3.8 System0 IP pool allocation

In an EVPN VXLAN fabric deployed with VXLAN tunnel endpoint (VTEP) functionality of SR

Linux nodes, the system0 IP address is used as the VTEP source address by default. The

following manifest file demonstrates how an IP allocation pool is created for assignment

as system0 IP address on leaf nodes of the fabric.

system0 IP pool allocation

apiVersion: core.eda.nokia.com/v1

kind: IPAllocationPool

metadata:

NVD 3-stage EVPN/VXLAN Fabric

46 3HE-21632-AAAA-TQZZA

Issue 1

 name: system0

 namespace: eda

 labels: {}

 annotations: {}

spec:

 segments:

 - subnet: 192.0.2.0/24

 allocations: []

 reservations: []

Example 27. IP pool for system 0 addresses

6.3.9 Interface creation

The following manifest file demonstrates how interfaces are instantiated in EDA per

onboarded SR Linux node. The example below uses a point-to-point interface connecting

a leaf named d5-leaf1 to a spine named spine1.

d5-leaf1 interface to spine1

apiVersion: interfaces.eda.nokia.com/v1alpha1

kind: Interface

metadata:

 labels:

 eda.nokia.com/role: interSwitch

 name: d5-leaf1-ethernet-1-29

 namespace: eda

spec:

 enabled: true

 lldp: true

 members:

 - enabled: true

 interface: ethernet-1-29

 node: d5-leaf1

 type: interface

Example 28. Interface resource

6.3.10 Link creation

The following manifest file demonstrates how links are created between two onboarded

nodes in EDA.

link between d5-leaf1 and spine1

apiVersion: core.eda.nokia.com/v1

kind: TopoLink

metadata:

 labels:

 eda.nokia.com/role: interSwitch

 name: d5-leaf1-spine1

 namespace: eda

NVD 3-stage EVPN/VXLAN Fabric

47 3HE-21632-AAAA-TQZZA

Issue 1

spec:

 links:

 - local:

 node: d5-leaf1

 interface: ethernet-1-29

 interfaceResource: "d5-leaf1-ethernet-1-29"

 remote:

 node: spine1

 interface: ethernet-1-29

 interfaceResource: "spine1-ethernet-1-29"

 type: interSwitch

Example 29. TopoLink resource

6.3.11 Fabric creation (underlay and overlay)

The following manifest file demonstrates how an EVPN VXLAN fabric is orchestrated via

EDA by using IPv6 link-local addressing and enabling MP-BGP peering (eBGP) between the

leafs and the spines, carrying multiple address families. Several inputs are provided into

the manifest file, which includes the IP pool for system0 assignment, ASN pools for leafs

and spines, label selectors for leaf and spine nodes, and the interswitch links between the

leafs and the spines. The fabric is also enabled for BFD.

fabric creation with IPv6 link-local addressing (IPv6 unnumbered)

apiVersion: fabrics.eda.nokia.com/v1alpha1

kind: Fabric

metadata:

 name: dc1

 namespace: eda

spec:

 systemPoolIPV4: system0

 leafs:

 leafNodeSelector:

 - eda.nokia.com/role=leaf

 asnPool: leaf-asn

 spines:

 spineNodeSelector:

 - eda.nokia.com/role=spine

 asnPool: spine-asn

 interSwitchLinks:

 unnumbered: IPV6

 linkSelector:

 - eda.nokia.com/role=interSwitch

 underlayProtocol:

 protocol:

 - EBGP

 bfd:

 enabled: true

 detectionMultiplier: 3

 minEchoReceiveInterval: 250000

NVD 3-stage EVPN/VXLAN Fabric

48 3HE-21632-AAAA-TQZZA

Issue 1

 desiredMinTransmitInt: 250000

 requiredMinReceive: 250000

 bgp:

 asnPool: asn-pool

 overlayProtocol:

 protocol: EBGP

Example 30. Underlay orchestration manifest

6.3.12 Bridge domain creation

Bridge domains, created in EDA for a VXLAN environment, are instantiated as MAC VRFs

on SR Linux nodes. MAC VRFs map to a VXLAN VNI and an EVPN Instance (EVI), which

enables it for EVPN learning.

bridge domain created for VNI 10010

apiVersion: services.eda.nokia.com/v1alpha1

kind: BridgeDomain

metadata:

 name: macvrf-v10

 namespace: eda

spec:

 type: EVPNVXLAN

 vni: 10010

 evi: 10

 tunnelIndexPool: tunnel-index-pool

 macAging: 300

 macDuplicationDetection:

 enabled: true

 holdDownTime: 9

 monitoringWindow: 3

 action: StopLearning

 numMoves: 5

Example 31. MAC-VRFs, VNIs and EVIs

6.3.13 IRB interfaces

IRB interfaces, when deployed within the fabric, facilitate routing between L2 VNIs in an

EVPN VXLAN deployment. The following manifest file demonstrates how IRB interfaces are

created in EDA. In the case of a VLAN (bridge domain) that is Layer 2 stretched across the

fabric, the Layer 3 proxy-ARP functionality should be enabled for the respective IRB sub

interface.

IRB interface for VLAN 10, VNI 10010

apiVersion: services.eda.nokia.com/v1alpha1

kind: IRBInterface

metadata:

 name: irb-v10

NVD 3-stage EVPN/VXLAN Fabric

49 3HE-21632-AAAA-TQZZA

Issue 1

 namespace: eda

spec:

 bridgeDomain: macvrf-v10

 router: vrf1

 learnUnsolicited: BOTH

 ipMTU: 9200

 ipAddresses:

 - ipv4Address:

 ipPrefix: 172.16.10.254/24

 primary: true

 arpTimeout: 250

 evpnRouteAdvertisementType:

 arpDynamic: true

 hostRoutePopulate:

 dynamic: false

 evpn: false

 static: false

 l3ProxyARPND:

 proxyARP: true

 proxyND: false

Example 32. IRB interface manifest

6.3.14 IP VRF creation

The following manifest file demonstrates how IP VRFs are created in EDA. This includes a

Layer 3 VNI (which has a 1:1 mapping to the IP VRF) and an EVPN Instance (EVI) along with

a label selector to determine where the IP VRFs are deployed.

VRF creation for vrf1

apiVersion: services.eda.nokia.com/v1alpha1

kind: Router

metadata:

 name: vrf1

 namespace: eda

spec:

 type: EVPNVXLAN

 vni: 10500

 evi: 500

 tunnelIndexPool: tunnel-index-pool

 nodeSelector:

 - eda.nokia.com/role=leaf

Example 33. VRF creation

6.3.15 VLAN creation

The following manifest file demonstrates how VLANs are created in EDA, using examples

of an untagged and tagged Layer 2 deployment. The label selectors determine which

interfaces the VLANs are deployed on.

NVD 3-stage EVPN/VXLAN Fabric

50 3HE-21632-AAAA-TQZZA

Issue 1

VLAN creation for an untagged Layer 2 interface

apiVersion: services.eda.nokia.com/v1alpha1

kind: VLAN

metadata:

 name: untagged-v10

 namespace: eda

spec:

 bridgeDomain: macvrf-v10

 interfaceSelector:

 - eda.nokia.com/untagged-v10=enabled

 vlanID: untagged

VLAN creation for an tagged Layer 2 interface

apiVersion: services.eda.nokia.com/v1alpha1

kind: VLAN

metadata:

 name: tagged-v20

 namespace: eda

spec:

 bridgeDomain: macvrf-v20

 interfaceSelector:

 - eda.nokia.com/tagged-v20=enabled

 vlanID: "20"

Example 34. VLAN creation

6.3.16 EDA configlets

EDA provides the flexibility to input user-defined configuration (that may not be auto-

generated by EDA in a particular version). This functionality is achieved via configlets. The

3-stage EVPN VXLAN validated design uses configlets for the following purposes:

- Enable BGP rapid advertisement and withdraw

- Enable Designated Forwarder (DF) election activation timer for Ethernet Segment

(for transition from non-DF to DF)

- Enable the advertisement of ARP/ND entries only when corresponding MAC entries

exist for a MAC VRF

- Enable node isolation functionality

- Configure system-wide default MTUs

The following manifest file shows an example configlet (using BGP rapid advertisement

and withdraw as a reference).

configlet for BGP EVPN rapid withdraw

apiVersion: config.eda.nokia.com/v1alpha1

kind: Configlet

metadata:

 name: bgp-evpn-rapid

 namespace: eda

NVD 3-stage EVPN/VXLAN Fabric

51 3HE-21632-AAAA-TQZZA

Issue 1

spec:

 endpointSelector:

 - eda.nokia.com/role=leaf

 - eda.nokia.com/role=spine

 operatingSystem: srl

 priority: 100

 configs:

 - path: .network-instance{.name=="default"}.protocols.bgp.afi-safi{.afi-safi-

name=="evpn"}.evpn

 operation: Update

 config: |-

 {

 "rapid-update": "true"

 }

configlet for BGP rapid withdrawal

apiVersion: config.eda.nokia.com/v1alpha1

kind: Configlet

metadata:

 name: bgp-rapid-route-withdraw

 namespace: eda

spec:

 endpointSelector:

 - eda.nokia.com/role=leaf

 - eda.nokia.com/role=spine

 operatingSystem: srl

 priority: 100

 configs:

 - path: .network-instance{.name=="default"}.protocols.bgp.route-advertisement

 operation: Update

 config: |-

 {

 "rapid-withdrawal": "true"

 }

Example 35. Configlet – BGP EVPN rapid withdrawal and EVPN rapid update

 EDA workflows via user interface (UI)

6.4.1 Node profiles for node onboarding

Node profiles are specified during node onboarding and are used to determine the IP pool

from which to assign an IP address to the node, what the gNMI discovery port is, and the

username/password credentials to log into the device. Node profiles can be created by

navigating to Main -> Node Profiles.

NVD 3-stage EVPN/VXLAN Fabric

52 3HE-21632-AAAA-TQZZA

Issue 1

Figure 15. Node profile creation page in EDA UI

Figure 16. List of all created node profiles (default and user-defined) in EDA UI

6.4.2 ASN pools for leafs and spines

The ASN pools are created as indices pools, which can then be assigned to leafs and

spines during fabric creation. These indices pools can be viewed and created by navigating

to Main -> Indices.

NVD 3-stage EVPN/VXLAN Fabric

53 3HE-21632-AAAA-TQZZA

Issue 1

Figure 17. ASN creation as an indices pool in EDA UI

Figure 18. List of all indices pools (default and user-defined) in EDA UI

6.4.3 IP pool creation allocation

IP pools can be created for multiple reasons – a subnet allocation or an exact IP address

allocation, for example. In the case of this NVD, an IP pool of type IP Addresses is created

to assign a unique IPv4 address from an IPv4 subnet for the system0 interface of nodes in

the fabric. This can be created by navigating to Main -> IP Addresses.

NVD 3-stage EVPN/VXLAN Fabric

54 3HE-21632-AAAA-TQZZA

Issue 1

Figure 19. IP pool creation in EDA UI

Figure 20. List of all IP pools (default and user-defined) in EDA UI

6.4.4 Onboarding nodes

Nodes can be created and viewed by navigating to Main -> Nodes. These are nodes

onboarded into the fabric and represented in the topology view.

NVD 3-stage EVPN/VXLAN Fabric

55 3HE-21632-AAAA-TQZZA

Issue 1

Figure 21. Node creation (onboarding) in EDA UI

Figure 22. List of all onboarded nodes (along with different monitored parameters) in

EDA UI

6.4.5 Fabric creation

Fabrics can be created by navigating to Main -> Fabrics. This instantiates all fabric nodes

(based on label selector) and pushes the generated fabric configuration per-node.

NVD 3-stage EVPN/VXLAN Fabric

56 3HE-21632-AAAA-TQZZA

Issue 1

Figure 23. Fabric creation in EDA UI

Figure 24. List of all fabrics in EDA UI

6.4.6 Bridge domains

Bridge domains are instantiated as MAC VRFs on fabric nodes and can be created by

navigating to Main -> Virtual Networks -> Bridge Domains.

NVD 3-stage EVPN/VXLAN Fabric

57 3HE-21632-AAAA-TQZZA

Issue 1

Figure 25. Bridge domain creation in EDA UI

Figure 26. List of all bridge domains in EDA UI

6.4.7 IRB interfaces

IRB interfaces act as the default gateway for services connected to the leafs and are

deployed using an anycast, distributed gateway model. IRB interfaces can be created by

navigating to Main -> Virtual Networks -> IRB Interfaces.

NVD 3-stage EVPN/VXLAN Fabric

58 3HE-21632-AAAA-TQZZA

Issue 1

Figure 27. IRB interface creation in EDA UI

Figure 28. List of all IRB interfaces in EDA UI

6.4.8 IP VRFs (Routers)

IP VRFs are used to provide multitenancy and Layer 3 isolation. IP VRFs can be created by

navigating to Main -> Virtual Networks -> Routers.

NVD 3-stage EVPN/VXLAN Fabric

59 3HE-21632-AAAA-TQZZA

Issue 1

Figure 29. IP VRF (router) creation in EDA UI

Figure 30. List of all IP VRFs in EDA UI

6.4.9 VLANs

VLANs can be created by navigating to Main -> Virtual Networks -> VLANs.

NVD 3-stage EVPN/VXLAN Fabric

60 3HE-21632-AAAA-TQZZA

Issue 1

Figure 31. VLAN creation in EDA UI

Figure 32. List of all VLANs in EDA UI

6.4.10 Configlets for custom configuration

Configlets allow for supplemental configuration that can be added to the per-node

configuration generated by EDA. Configlets can be created by navigating to Main ->

Configuration -> Configlets.

NVD 3-stage EVPN/VXLAN Fabric

61 3HE-21632-AAAA-TQZZA

Issue 1

Figure 33. Configuration configlets creation in EDA UI

7 Validation

 Network validation

7.1.1 Underlay and overlay

The underlay comprises of point-to-point IPv6 link-local addressing with IPv6 Neighbor

Discovery to discover the peer on its local link. BGP dynamic discovery is then used to

establish MP-BGP peering with the neighbor, with IPv4, IPv6, and EVPN address families

(and sub-address families) exchanged as capabilities over this single peering.

The discovered neighbors on an IPv6 interface can be confirmed using info from state

interface [interface] subinterface [subinterface] ipv6 neighbor-discovery.

A:d5-leaf1# info from state interface ethernet-1/29 subinterface 0 ipv6 neighbor-discovery
neighbor * | as yaml

interface:
 - name: ethernet-1/29
 subinterface:
 - index: 0
 ipv6:
 neighbor-discovery:
 neighbor:
 - ipv6-address: 'fe80::429b:21ff:fed8:83f0'
 link-layer-address: '40:9B:21:D8:83:F0'
 origin: dynamic
 is-router: true
 current-state: stale
 next-state-time: '2024-10-27T21:39:53.886Z (3 minutes from now)'
 datapath-programming:

NVD 3-stage EVPN/VXLAN Fabric

62 3HE-21632-AAAA-TQZZA

Issue 1

 status: success

Example 36. Interface discovery

The state of BGP neighbors can be confirmed using show network-instance default

protocols bgp neighbor. This is with the assumption that the BGP peers are configured for

the default network-instance.

A:d5-leaf1# show network-instance default protocols bgp neighbor
fe80::429b:21ff:fed8:83f0%ethernet-1/29.0 | as yaml

neighbor summary:
 - network-instance: default
 state:
 - Net-Inst: default
 - Peer: 'fe80::429b:21ff:fed8:83f0%ethernet-1/29.0'
 Group: bgpgroup-ebgp-dc1
 Flags: DB
 Peer-AS: 65500
 State: established
 Uptime: '8d:0h:22m:30s'
 AFI/SAFI: evpn\nipv4-unicast\nipv6-unicast

snip

Example 37. BGP neighborship

BFD is used for fast-failover in the NVD. The BFD session state can be confirmed using

info from state bfd network-instance default peer [index].

A:d5-leaf1# info from state bfd network-instance default peer 16385 | as yaml

bfd:
 network-instance:
 - name: default
 peer:
 - local-discriminator: 16385
 oper-state: up
 ipv6-link-local-interface: ethernet-1/29.0
 local-address: 'fe80::ca72:7eff:fe10:e2a3'
 remote-address: 'fe80::429b:21ff:fed8:83f0'
 remote-discriminator: 16397
 subscribed-protocols: BGP
 session-state: UP
 remote-session-state: UP
 last-state-transition: '2024-10-19T21:16:27.634Z (8 days ago)'
 failure-transitions: 0
 local-diagnostic-code: NO_DIAGNOSTIC
 remote-diagnostic-code: NO_DIAGNOSTIC
 remote-minimum-receive-interval: 250000
 remote-control-plane-independent: false
 active-transmit-interval: 250000
 active-receive-interval: 250000
 remote-multiplier: 3
 async:
 last-packet-transmitted: '2024-10-27T21:42:06.897Z (a second ago)'
 last-packet-received: '2024-10-27T21:42:06.817Z (a second ago)'
 transmitted-packets: 3497295
 received-packets: 3497461

NVD 3-stage EVPN/VXLAN Fabric

63 3HE-21632-AAAA-TQZZA

Issue 1

 up-transitions: 1

Example 38. BFD information

In addition to viewing routes in BGP RIB-In using show network-instance default protocols

bgp routes [family] summary, all routes advertised and received via BGP can also be

confirmed using the commands show network-instance default protocols bgp neighbor

[neighbor] advertising-routes [family] and show network-instance default protocols bgp

neighbor [neighbor] received-routes [family].

A:d5-leaf1# show network-instance default protocols bgp routes ipv4 summary | as yaml

header:
 - Header: default
 net-inst: default
 routes:
 - Status: u*>
 - Network: 192.0.2.1/32
 - Next Hop: 'fe80::22de:1eff:fea4:524%ethernet-1/30.0'
 LocPref: 100
 Path Val: ' i[65500, 65414]'
 - Status: u*>
 - Network: 192.0.2.1/32
 - Next Hop: 'fe80::429b:21ff:fed8:83f0%ethernet-1/29.0'
 LocPref: 100
 Path Val: ' i[65500, 65414]'

Example 39. BGP routes

7.1.2 Link aggregation

Interface state (and overall LAG state) can be viewed using show lag [lag-interface] brief

or show lag [lag-interface] lacp-state for LACP-enabled LAGs.

A:d5-leaf1# show lag lag1 lacp-state | as yaml

LacpHeader:
 - Lag Id: lag1
 LacpBrief:
 Interval: FAST
 Mode: ACTIVE
 System Id: '00:00:11:22:33:44'
 System Priority: 32768
 LacpState:
 - Members: ethernet-1/3
 Oper state: up
 Activity: ACTIVE
 Timeout: SHORT
 State: IN_SYNC/True/True/True
 System Id: '00:00:11:22:33:44'
 Oper key: 1
 Partner Id: '00:00:00:00:00:11'
 Partner Key: 32768
 Port No: 1
 Partner Port No: 1

Example 40. LAG state information

NVD 3-stage EVPN/VXLAN Fabric

64 3HE-21632-AAAA-TQZZA

Issue 1

7.1.3 Ethernet segments

For Ethernet segments, Designated Forwarder (DF) and non-DF status can be determined

on a per VRF basis.

A:d5-leaf1# show system network-instance ethernet-segments detail | as yaml

Ethernet-Segment:
 - Name: leaf1-leaf2-leaf3-leaf4-lag1
 Admin State: enable
 Oper State: up
 ESI: '00:00:00:11:22:33:44:00:00:00'
 Multi-homing: all-active
 Oper Multi-homing: all-active
 Interface: lag1
 Next-hop: N/A
 evi: N/A
 ES Activation Timer: 0
 DF Election: default
 Oper DF Election: default
 Last change: '2024-10-27T22:56:14.342Z'
 TimerInfo:
 - MAC-VRF: leaf1-leaf2-leaf3-leaf4-lag1
 Actv Timer Rem: 0
 DF: Yes
 NetworkInstance:
 - Network-instance: macvrf-v10
 - ES Peers: 192.0.2.1
 - Network-instance: macvrf-v10
 - ES Peers: 192.0.2.3
 - Network-instance: macvrf-v10
 - ES Peers: 192.0.2.4 (DF)
 - Network-instance: macvrf-v10
 - ES Peers: 192.0.2.6
 - Network-instance: macvrf-v50
 - ES Peers: 192.0.2.1
 - Network-instance: macvrf-v50
 - ES Peers: 192.0.2.3
 - Network-instance: macvrf-v50
 - ES Peers: 192.0.2.4 (DF)
 - Network-instance: macvrf-v50
 - ES Peers: 192.0.2.6

Example 41. Ethernet segment description

7.1.4 MAC VRFs and MAC address learning

The bridge table per MAC-VRF can be viewed using the commands given below.

A:d5-leaf1# show network-instance macvrf-v10 summary | as yaml

Network Instance:
 - Name: macvrf-v10
 Type: mac-vrf
 Admin state: enable
 Oper state: up
 Router id: N/A
 Description: macvrf-v10

A:d5-leaf1# show network-instance macvrf-v10 bridge-table mac-table all | as yaml

NVD 3-stage EVPN/VXLAN Fabric

65 3HE-21632-AAAA-TQZZA

Issue 1

Network:
 - Name: macvrf-v10
 Mac table:
 - Address: '00:00:5E:00:01:01'
 Destination: irb-interface
 Dest Index: 0
 Type: irb-interface-anycast
 Active: true
 Aging: N/A
 Last Update: '2024-10-19T21:16:11.000Z'
 - Address: '00:11:01:00:00:01'
 Destination: ethernet-1/1.4096
 Dest Index: 11
 Type: learnt
 Active: true
 Aging: 271
 Last Update: '2024-10-25T01:49:52.000Z'
 - Address: '20:5E:97:B3:FA:FF'
 Destination: 'vxlan-interface:vxlan0.500 vtep:192.0.2.3 vni:10010'
 Dest Index: 7521570
 Type: evpn-static
 Active: true
 Aging: N/A
 Last Update: '2024-10-24T03:27:18.000Z'

snip

A:d5-leaf1# show tunnel-interface vxlan-interface bridge-table unicast-destinations destination |
as yaml

vxlan-tunnel:
 - Tunnel Interface: '*'
 - VxLAN Interface: '*'
Destinations:
 - VTEP Address: 192.0.2.1
 - Egress VNI: 10010
 Destination-index: 7521598
 Number MACs (Active/Failed): 1(1/0)
 - VTEP Address: 192.0.2.2
 - Egress VNI: 10010
 Destination-index: 7521569
 Number MACs (Active/Failed): 1(1/0)
 - VTEP Address: 192.0.2.3
 - Egress VNI: 10010
 Destination-index: 7521570
 Number MACs (Active/Failed): 1(1/0)

snip

Example 42. Bridge table per MAC VRF

7.1.5 Route validation in default network-instance and IP VRFs

The command below shows routes in the default network-instance. The default network-

instance can be changed to user defined network instances based on VRFs in use.

A:d5-leaf1# show network-instance default route-table ipv4-unicast route 192.0.2.1 | as yaml

instance:
 - Name: default
 ip route:

NVD 3-stage EVPN/VXLAN Fabric

66 3HE-21632-AAAA-TQZZA

Issue 1

 - Prefix: 192.0.2.1/32
 - ID: 0
 - Route Type: bgp
 - Route Owner: bgp_mgr
 - Active: True
 - Origin Network Instance: default
 Metric: 0
 Pref: 170
 Next-hop (Type): 'fe80::22de:1eff:fea4:524 (direct)\nfe80::429b:21ff:fed8:83f0 (direct)'
 Next-hop Interface: ethernet-1/30.0 \nethernet-1/29.0
 Backup Next-hop (Type):
 Backup Next-hop Interface:

Example 43. Route validation

 EDA validation

The validation steps shown below are Kubernetes CLI based EDA validations; the UI

workflow in the subsequent sections will show the UI validations as well.

Note: All the resources within EDA and Kubernetes exist within a specific namespace; thus,

while accessing the resources, either a -n <namespace name> or -A for all namespaces

must be mentioned.

7.2.1 Onboarding validation

The output below shows the first phase validation in EDA fabric onboarding after the

manifests have been applied. The expected state is that the nodes are in DHCP

acknowledged and are ready to communicate via port 57400.

:~$ kubectl get targetnodes -A
NAMESPACE NAME NODESECURITYPROFILE STATUS DHCP ADDRESS PORT
eda d3-leaf5 managed-tls Ready Acknowledged 192.168.70.8 57400
eda d3-leaf6 managed-tls Ready Acknowledged 192.168.70.9 57400
eda d4-leaf3 managed-tls Ready Acknowledged 192.168.70.6 57400
eda d4-leaf4 managed-tls Ready Acknowledged 192.168.70.7 57400
eda d5-leaf1 managed-tls Ready Acknowledged 192.168.70.4 57400
eda d5-leaf2 managed-tls Ready Acknowledged 192.168.70.5 57400
eda spine1 managed-tls Ready Acknowledged 192.168.70.2 57400
eda spine2 managed-tls Ready Acknowledged 192.168.70.3 57400

Example 44. DHCP, gNMI port, and node status validation

Once the first phase is completed, EDA will deploy an NPP pod per node that will continue

the onboarding process: NOS status check and sync and then orchestrate the fabric by

configuring the nodes. The expected state here is ONBOARDED = true, NPP connected,

and NODE synced with the correct SR Linux version.

:~$ kubectl get toponodes -A
NAMESPACE NAME PLATFORM VERSION OS ONBOARDED MODE NPP NODE
eda d3-leaf5 7220 IXR-D3L 24.10.2 srl true normal Connected Synced
eda d3-leaf6 7220 IXR-D3L 24.10.2 srl true normal Connected Synced
eda d4-leaf3 7220 IXR-D4 24.10.2 srl true normal Connected Synced
eda d4-leaf4 7220 IXR-D4 24.10.2 srl true normal Connected Synced
eda d5-leaf1 7220 IXR-D5 24.10.2 srl true normal Connected Synced
eda d5-leaf2 7220 IXR-D5 24.10.2 srl true normal Connected Synced

NVD 3-stage EVPN/VXLAN Fabric

67 3HE-21632-AAAA-TQZZA

Issue 1

eda spine1 7220 IXR-H4 24.10.2 srl true normal Connected Synced
eda spine2 7220 IXR-H4 24.10.2 srl true normal Connected Synced

Example 45. OS version, ZTP onboarding status validation

Each of the resources cataloged above via the “kubectl get” command can be viewed in

further detail via the “kubectl describe” command; this provides verbose information

about probable failure causes as well.

:~$ kubectl describe targetnodes d5-leaf1 -n eda
Name: d5-leaf1
Namespace: eda
Labels: eda.nokia.com/hostname=d5-leaf1
 eda.nokia.com/role=leaf
 eda.nokia.com/security-profile=managed
 eda.nokia.com/source=derived
Annotations: <none>
API Version: core.eda.nokia.com/v1
Kind: TargetNode
Metadata:
 Creation Timestamp: 2025-01-07T08:58:54Z
 Generation: 2
 Resource Version: 8325623
 UID: e02108a2-1ccd-4fdd-981a-5b2eef587dbc
Spec:
 Address: 192.168.70.4
 dhcp4:
 Address: 192.168.70.4
 Options:
 Option: 3-Router
 Value:
 192.168.70.1
 Option: 51-IPAddressLeaseTime
 Value:
 604800
 Option: 1-SubnetMask
 Value:
 255.255.255.0
 Option: 67-BootfileName
 Value:
 http://100.116.161.50:9200/core/httpproxy/v1/asvr/eda/init-base/bootscript-d5-leaf1/d5-
leaf1-provision.py
 Operating System: srl
 Platform: 7220 IXR-D5
 Port: 57400
 Serial Number: NK220431218
 Version Match: v24\.10\.2.*
 Version Path: .system.information.version
Status:
 Bootstrap Status: Ready
 Bootstrap Status Reason: onboard success
 Dhcp Status: Acknowledged
 Tls Status:
 Node Security Profile: managed-tls
 Tls:
 Csr Params:
 Certificate Validity: 2160h0m0s
 City: Sunnyvale
 Country: US
 Csr Suite: CSRSUITE_X509_KEY_TYPE_RSA_2048_SIGNATURE_ALGORITHM_SHA_2_256
 Org: NI
 Org Unit: EDA

NVD 3-stage EVPN/VXLAN Fabric

68 3HE-21632-AAAA-TQZZA

Issue 1

 San:
 Dns:
 d5-leaf1
 Ips:
 192.168.70.4
 State: California
 Issuer Ref: eda-node-issuer
Events: <none>

Example 46. Target node description

:~$ kubectl describe toponodes d5-leaf1 -n eda
Name: d5-leaf1
Namespace: eda
Labels: eda.nokia.com/hostname=d5-leaf1
 eda.nokia.com/role=leaf
 eda.nokia.com/security-profile=managed
Annotations: <none>
API Version: core.eda.nokia.com/v1
Kind: TopoNode
Metadata:
 Creation Timestamp: 2025-01-07T08:58:53Z
 Generation: 6
 Resource Version: 9033956
 UID: 4cce0f9c-d710-4d58-af6a-b9ae00896e94
Spec:
 Node Profile: real-srlinux-24.10.2
 Npp:
 Mode: normal
 On Boarded: true
 Operating System: srl
 Platform: 7220 IXR-D5
 Serial Number: NK220431218
 Version: 24.10.2
Status:
 Node - Details: 192.168.70.4:57400
 Node - State: Synced
 Npp - Details: 10.244.0.42:50057
 Npp - State: Connected
 Operating System: srl
 Platform: 7220 IXR-D5
 Version: 24.10.2
Events: <none>

Example 47. Toponode description

EDA has a unique ability to determine the operational state of various components of the

fabric on the CLI, from interfaces to VLANs to VRFs. The network administrator can get

the overall state of the fabric via CLI and GUI. The following examples demonstrate these

validations.

:~$ kubectl get interfaces -A
NAMESPACE NAME ENABLED OPERATIONAL STATE SPEED LAST CHANGE
eda d3-leaf5-ethernet-1-1 true up 100G 8d
eda d3-leaf5-ethernet-1-10 true up 100G 8d
eda d3-leaf5-ethernet-1-2 true up 100G 3d1h
eda d3-leaf5-ethernet-1-5 false down 100G 8d
eda d3-leaf5-ethernet-1-9 true up 100G 8d
eda d3-leaf6-ethernet-1-1 true down 100G 3d1h
eda d3-leaf6-ethernet-1-10 true up 100G 17d
eda d3-leaf6-ethernet-1-5 true up 100G 17d

NVD 3-stage EVPN/VXLAN Fabric

69 3HE-21632-AAAA-TQZZA

Issue 1

Example 48. Fabric wide interface(s) status

:~$ kubectl get vlans -A
NAMESPACE NAME BRIDGEDOMAIN OPERDOWN SUBIF TOTAL SUBIF OPERATIONALSTATE
LASTCHANGE AGE
eda tagged-v20 macvrf-v20
42d
eda tagged-v40 macvrf-v40 0 1 up 2025-
02-12T05:08:01.000Z 42d
eda tagged-v50 macvrf-v50 0 5 up 2025-
02-20T11:10:22.000Z 42d
eda tagged-v60 macvrf-v60 1 2 degraded 2025-
02-17T10:06:37.000Z 30d
eda untagged-v10 macvrf-v10 1 8 degraded 2025-
02-12T05:27:58.000Z 42d
eda untagged-v20 macvrf-v20 1 2 degraded 2025-
02-17T10:06:37.000Z 42d
eda untagged-v30 macvrf-v30
42d
eda untagged-v40 macvrf-v40
42d
eda untagged-v50 macvrf-v50
42d
eda untagged-v60 macvrf-v60
42d

Example 49. Fabric wide VLAN status

:~$ kubectl get bridgedomain -A
NAMESPACE NAME VNI EVI IMPORT TARGET EXPORT TARGET OPERDOWN SUBIF TOTAL
SUBIF OPERATIONALSTATE LASTCHANGE
eda macvrf-v10 10010 10 target:1:10 target:1:10 1 8
degraded 2025-02-12T05:27:58.000Z
eda macvrf-v20 10020 20 target:1:20 target:1:20 1 2
degraded 2025-02-17T10:06:38.000Z
eda macvrf-v30 10030 30 target:1:30 target:1:30 0 0
down 2025-02-06T05:22:37.000Z
eda macvrf-v40 10040 40 target:1:40 target:1:40 0 1
up 2025-02-12T05:08:01.000Z
eda macvrf-v50 10050 50 target:1:50 target:1:50 0 5
up 2025-02-20T11:10:22.000Z
eda macvrf-v60 10060 60 target:1:60 target:1:60 1 2
degraded 2025-02-17T10:06:38.000Z

Example 50. Fabric wide bridge domain status

:~$ kubectl get irbinterfaces -A
NAMESPACE NAME MTU OPERATIONALSTATE LASTCHANGE
eda irb-v10 9200 up 2025-02-20T11:10:18.000Z
eda irb-v20 9200 up 2025-02-20T11:10:18.000Z
eda irb-v30 9200 up 2025-02-20T11:10:18.000Z
eda irb-v40 9200 up 2025-02-20T11:10:18.000Z
eda irb-v50 9200 up 2025-02-20T11:10:18.000Z
eda irb-v60 9200 up 2025-02-20T11:10:18.000Z

Example 51. Fabric wide IRB status

:~$ kubectl describe irbinterfaces irb-v10 -n eda
Name: irb-v10
Namespace: eda
Labels: <none>
Annotations: <none>

NVD 3-stage EVPN/VXLAN Fabric

70 3HE-21632-AAAA-TQZZA

Issue 1

API Version: services.eda.nokia.com/v1alpha1
Kind: IRBInterface
Metadata:
 Creation Timestamp: 2025-01-08T12:15:31Z
 Generation: 7
 Resource Version: 9698627
 UID: 38f1ab4f-ca15-4017-98ae-4983acbabb76
Spec:
 Arp Timeout: 250
 Bridge Domain: macvrf-v10
 Evpn Route Advertisement Type:
 Arp Dynamic: true
 Arp Static: false
 Nd Dynamic: false
 Nd Static: false
 Host Route Populate:
 Dynamic: false
 Evpn: false
 Static: false
 Ip Addresses:
 ipv4Address:
 Ip Prefix: 172.16.10.254/24
 Primary: true
 Ip MTU: 9200
 l3ProxyARPND:
 Proxy ARP: true
 Proxy ND: false
 Learn Unsolicited: BOTH
 Router: vrf1
Status:
 Interfaces:
 Enabled: true
 ipv4Addresses:
 Ip Prefix: 172.16.10.254/24
 Primary: true
 Last Change: 2025-02-20T11:14:17.562Z
 Node: d4-leaf3
 Node Interface: irb0.4
 Operating System: srl
 Operational State: up
 Enabled: true
 ipv4Addresses:
 Ip Prefix: 172.16.10.254/24
 Primary: true
 Last Change: 2024-12-28T04:05:04.265Z
 Node: d5-leaf2
 Node Interface: irb0.4
 Operating System: srl
 Operational State: up
snip

Example 52. IRB description

:~$ kubectl get routers -A
NAMESPACE NAME VNI EVI IMPORT TARGET EXPORT TARGET OPERATIONALSTATE LASTCHANGE
eda vrf1 10500 500 target:1:500 target:1:500 up 2025-02-
20T11:10:18.000Z
eda vrf2 10501 501 target:1:501 target:1:501 up 2025-02-
20T11:10:18.000Z

Example 53. VRF description and state

NVD 3-stage EVPN/VXLAN Fabric

71 3HE-21632-AAAA-TQZZA

Issue 1

EDA also provides a tool called edactl that can be used to provide insight into the internal

transactions and workflow results. The edactl tool can be used by accessing the eda-

toolbox pod. See the following example for reference.

kubectl exec -it eda-toolbox-84c95bd8c6-ptbt4 -n eda-system – bash

root in on eda-toolbox-84c95bd8c6-ptbt4 /eda

➜ edactl transaction 580
input-crs:
 gvk: core.eda.nokia.com/v1, kind=Deviation name: spine2-
1260f6d2a707ccc7e2ed976c73113e47a3d5bfc4 action: CreateUpdate
 gvk: core.eda.nokia.com/v1, kind=Deviation name: spine2-
22ff7015d4bd52f6ba8d7d4633a00c5baef2e54b action: CreateUpdate
 gvk: core.eda.nokia.com/v1, kind=Deviation name: spine2-
856da911e3c57777a6d0dd127133005e1e1a97c2 action: CreateUpdate
 gvk: core.eda.nokia.com/v1, kind=Deviation name: spine2-
d6ec53ba28385d3daa558fa368350c58130aaeb6 action: CreateUpdate
intents-run:
nodes-with-config-changes:
general-errors:
commit-hash: 85dd1e47f78a93322745106a8e67782a1d1eb49c
execution-summary:
timestamp: 2025-02-04 06:45:03 +0000 UTC [2025-02-04T06:45:03Z] - 514h19m ago
result: OK
dry-run: false

Example 54. Transaction details by using edactl tool

The above tools and utilities are critical in both orchestrating and troubleshooting the

fabric for before Day-0 and post Day-2 operations.

8 Automation and orchestration

 Digital twin with Containerlab

Digital twins are an integral part of Day-0 through Day-2 operations, providing the

operations and deployment teams with the opportunity to continuously validate the look

and feel of any deployment. These virtual fabrics also grant the ability to learn and play

with technologies and designs – in this case, a prescriptive 3-stage EVPN VXLAN fabric that

has been validated and tuned to provide maximum efficiency and redundancy.

A digital twin of this NVD can be deployed using Containerlab and containerized SR Linux.

The repository can be found here - https://github.com/nokia/nokia-validated-designs.

This includes:

- An EDA-orchestrated deployment, which comprises of:

o All manifest files required for an EDA-orchestrated digital twin of the 3-

stage EVPN VXLAN NVD

o A bash script (deploy-3-stage-nvd.sh) that deploys the end-to-end fabric

https://github.com/nokia/nokia-validated-designs

NVD 3-stage EVPN/VXLAN Fabric

72 3HE-21632-AAAA-TQZZA

Issue 1

o A bash script (destroy-3-stage-nvd.sh) that destroys all resources created

by the deployment script

Note: For the EDA-orchestrated deployment, the deployment bash script

assumes the respective Containerlab topology (3-stage-nvd.clab.yaml) is

already deployed and healthy.

- A non-EDA deployment with all configuration pre-loaded for end-to-end fabric

functionality.

	1 Executive summary
	2 Reference architecture overview
	2.1 Design considerations and components
	2.2 High-level operational workflow

	3 Network deployment
	3.1 High-level design
	3.2 Platform positioning
	3.3 Network architecture

	4 Feature configuration
	4.1 Underlay with IPv6 link-local addressing for P2P interfaces between leafs and spines
	4.2 Default network-instance
	4.3 BGP for underlay and overlay routes
	4.4 Maximum Transmission Unit (MTU)
	4.5 Bidirectional Forwarding Detection (BFD)
	4.6 Link Layer Discovery Protocol (LLDP)
	4.7 Layer 2 server-facing interfaces
	4.8 All-active ES-based link aggregation group (LAG)
	4.9 Single-active ES-based link aggregation group (LAG)
	4.10 Active/backup with no Link Aggregation Group (LAG)
	4.11 Layer 3 server-facing interfaces
	4.12 IRB interfaces
	4.13 VXLAN tunnels
	4.14 MAC VRFs
	4.15 IP VRFs
	4.16 Node isolation

	5 Test summary
	5.1 Feature matrix

	6 EDA integration
	6.1 EDA architecture
	6.2 EDA onboarding with ZTP
	6.3 EDA Kubernetes workflow for NVD deployment
	6.3.1 EDA artifacts for SR Linux version 24.10.2
	6.3.2 Subnet allocation for management of SR Linux fabric nodes
	6.3.3 EDA node profile for node onboarding
	6.3.4 Modify existing init-base CR to save on commit for SR Linux nodes
	6.3.5 Create node user to manage SR Linux nodes from EDA
	6.3.6 Onboarding nodes in EDA with using a TopoNode Custom Resource
	6.3.7 Building ASN pools for leafs and spines of the fabric
	6.3.8 System0 IP pool allocation
	6.3.9 Interface creation
	6.3.10 Link creation
	6.3.11 Fabric creation (underlay and overlay)
	6.3.12 Bridge domain creation
	6.3.13 IRB interfaces
	6.3.14 IP VRF creation
	6.3.15 VLAN creation
	6.3.16 EDA configlets

	6.4 EDA workflows via user interface (UI)
	6.4.1 Node profiles for node onboarding
	6.4.2 ASN pools for leafs and spines
	6.4.3 IP pool creation allocation
	6.4.4 Onboarding nodes
	6.4.5 Fabric creation
	6.4.6 Bridge domains
	6.4.7 IRB interfaces
	6.4.8 IP VRFs (Routers)
	6.4.9 VLANs
	6.4.10 Configlets for custom configuration

	7 Validation
	7.1 Network validation
	7.1.1 Underlay and overlay
	7.1.2 Link aggregation
	7.1.3 Ethernet segments
	7.1.4 MAC VRFs and MAC address learning
	7.1.5 Route validation in default network-instance and IP VRFs

	7.2 EDA validation
	7.2.1 Onboarding validation

	8 Automation and orchestration
	8.1 Digital twin with Containerlab

